

an empirical xml guide

Robert McElrath

July, 2015

 i

Page

1 Introduction

2 Preliminaries

3 FS9 vs. FSX

4 Get, Set, and Units

4 Get and Set

4 Units

5 fs9gps Variable Groups

6 Flight Simulator Regions

12 ICAO

12 ICAO Examples

13 ICAO String Length

14 GPS Database Search: Search > Index > Display

14 Search and Extract

16 Index Pointer

18 Display of Extracted Data

20 Asynchronous Operation

20 When is Cycle Skipping Necessary?

21 Cycle Skip Example 1 – Nearest Searches

22 What happens when no cycle skipping code is used?

24 Cycle Skip Technique 1 - Cycle Counting

26 Cycle Skip Technique 2 - Let fs9gps tell you when it’s ready

28 Cycle Skip Example 2 – ICAO Transfers

 ii

28 Cycle Skip Technique - Cycle Count (“Let fs9gps tell you” not available)

31 Cycle skipping not critical if data only displayed

32 ICAO Search – No Cycle-Skipping Required

33 Conditional Text Display

35 ICAO Search Example

38 Resolving Multiple Ident Matches

40 ICAO Search Airports - A Special Case

41 ICAO Transfer

41 ICAO Transfer Example – NearestAirport > WaypointAirport

 FS9

 FSX

46 Waypoint Airport Group

46 WaypointAirportICAO

46 WaypointAirportIdent

46 WaypointAirportKind

46 WaypointAirportLongestRunwayDirection

46 WaypointAirportType

47 WaypointAirportName

47 WaypointAirportCity

47 � � WaypointAirportRegion

47 WaypointAirportLatitude

47 WaypointAirportLongitude

48 WaypointAirportElevation

48 WaypointAirportFuel1

48 WaypointAirportFuel2

48 WaypointAirportBestApproachEnum

48 WaypointAirportBestApproach

 iii

48 WaypointAirportRadarCoverage

48 � � WaypointAirportAirspace

49 WaypointAirportTowered

49 WaypointAirportCurrentFrequency

49 WaypointAirportFrequenciesNumber

49 WaypointAirportFrequencyName

49 WaypointAirportFrequencyLimit

50 WaypointAirportFrequencyValue

50 WaypointAirportFrequencyType

50 WaypointAirportCurrentRunway

50 WaypointAirportRunwaysNumber

50 WaypointAirportRunwayLatitude

50 WaypointAirportRunwayLongitude

51 WaypointAirportRunwayElevation

51 WaypointAirportRunwayDirection

52 WaypointAirportRunwayDesignation

52 WaypointAirportRunwayLength

52 WaypointAirportRunwayWidth

53 WaypointAirportRunwaySurface

53 WaypointAirportRunwayLighting

53 WaypointAirportCurrentApproach

53 WaypointAirportApproachesNumber

53 WaypointAirportApproachName

54 WaypointAirportApproachGps

54 WaypointAirportApproachTransitionsNumber

54 WaypointAirportApproachCurrentTransition

54 WaypointAirportApproachTransitionName

54 WaypointAirportApproachTransitionLatitude

54 WaypointAirportApproachTransitionLongitude

54 WaypointAirportApproachTransitionSize

 iv

55 FSX-only Variables

55 Approach Variables (not reliable)

55 WaypointAirportSelectedApproach

55 � WaypointAirportApproachSelectedTransition

55 WaypointAirportApproachNumberLegs

55 WaypointAirportApproachCurrentLeg

56 WaypointAirportApproachCurrentLegIcao

56 � WaypointAirportApproachCurrentLegType

56 WaypointAirportApproachCurrentLegBearing

56 WaypointAirportApproachCurrentLegDistance

56 WaypointAirportApproachCurrentLegIsMinutes

57 Frequency Variables (redundant with FS9)

57 WaypointAirportSelectedFrequencyIndex

57 WaypointAirportSelectedFrequencyValue

58 Waypoint Intersection Group

59 WaypointIntersectionICAO

59 WaypointIntersectionIdent

59 WaypointIntersectionType

59 � � WaypointIntersectionCity

59 WaypointIntersectionRegion

59 WaypointIntersectionLatitude

59 WaypointIntersectionLongitude

60 WaypointIntersectionNearestVorIdent

60 WaypointIntersectionNearestVorType

60 WaypointIntersectionNearestVorMagneticRadial

60 WaypointIntersectionNearestVorTrueRadial

60 WaypointIntersectionNearestVorDistance

 v

61 Waypoint NDB Group

62 WaypointNdbICAO

62 WaypointNdbIdent

62 WaypointNdbType

63 WaypointNdbName

63 � � WaypointNdbCity

63 WaypointNdbRegion

63 WaypointNdbLatitude

63 WaypointNdbLongitude

63 WaypointNdbElevation

63 WaypointNdbFrequency

63 � � WaypointNdbWeatherBroadcast

64 WaypointNdbMagneticVariation

65 FSX-only Variables

65 WaypointNdbNearestAirportId

65 WaypointNdbNearestAirportLongestRunwayDirection

65 WaypointNdbNearestAirportKind

65 WaypointNdbNearestAirportBearing

65 WaypointNdbNearestAirportDistance

66 Waypoint VOR Group

67 WaypointVorICAO

67 WaypointVorIdent

67 WaypointVorType

68 WaypointVorClass

68 WaypointVorName

68 � � WaypointVorCity

68 WaypointVorRegion

68 WaypointVorLatitude

68 WaypointVorLongitude

68 WaypointVorElevation

 vi

69 WaypointVorFrequency

69 � � WaypointVorWeatherBroadcast

69 WaypointVorMagneticVariation

70 FSX-only Variables

70 WaypointVorNearestAirportId

70 WaypointVorNearestAirportLongestRunwayDirection

70 WaypointVorNearestAirportKind

70 WaypointVorNearestAirportBearing

70 WaypointVorNearestAirportDistance

71 Nearest Airport Group

71 NearestAirportCurrentLatitude

71 NearestAirportCurrentLongitude

71 NearestAirportMaximumItems

71 NearestAirportMaximumDistance

71 NearestAirportItemsNumber

71 NearestAirportCurrentLine

71 NearestAirportCurrentICAO

72 NearestAirportCurrentIdent

72 NearestAirportCurrentAirportKind

72 NearestAirportCurrentLongestAirportDirection

72 NearestAirportCurrentDistance

72 NearestAirportCurrentTrueBearing

72 NearestAirportCurrentBestApproachEnum

73 NearestAirportCurrentBestApproach

73 NearestAirportCurrentComFrequencyName

73 NearestAirportCurrentComFrequencyValue

74 NearestAirportCurrentLongestRunwayLength

 vii

74 FSX-only Variables

74 Nearest Airport Data

74 NearestAirportSelected

74 NearestAirportSelectedAirportLatitude

74 NearestAirportSelectedAirportLongitude

74 NearestAirportSelectedLatitude

74 NearestAirportSelectedLongitude

74 NearestAirportSelectedAirportName

74 NearestAirportSelectedAirportCity

74 NearestAirportSelectedAirportElevation

75 Nearest Airport Frequency Data

75 NearestAirportCurrentFrequency

75 NearestAirportSelectedFrequencyIndex

75 NearestAirportSelectedNumberFrequencies

75 NearestAirportCurrentFrequencyName

76 NearestAirportSelectedFrequencyValue

76 Nearest Airport Runway Data

76 NearestAirportSelectedRunway

76 NearestAirportSelectedAirportRunwaysNumber

76 NearestAirportSelectedRunwayDesignation

76 NearestAirportSelectedRunwayLength

76 NearestAirportSelectedRunwayWidth

76 NearestAirportSelectedRunwaySurface

77 Nearest Airport Approach Data

77 NearestAirportCurrentApproach

77 NearestAirportSelectedApproachIndex

77 NearestAirportSelectedNumberApproaches

77 NearestAirportCurrentApproachName

 viii

78 Nearest Intersection Group

78 NearestIntersectionCurrentLatitude

78 NearestIntersectionCurrentLongitude

78 NearestIntersectionMaximumItems

78 NearestIntersectionMaximumDistance

78 NearestIntersectionCurrentFilter

79 NearestIntersectionAddIntersectionType

79 NearestIntersectionRemoveIntersectionType

80 NearestIntersectionSetDefaultFilter

80 Examples: NearestIntersection Add, Remove, and SetDefault

81 Example 1: NearestIntersectionAddIntersectionType

82 Example 2: NearestIntersectionRemoveIntersectionType

83 Example 3: NearestIntersectionSetDefaultFilter

84 NearestIntersectionItemsNumber

84 NearestIntersectionCurrentLine

84 NearestIntersectionCurrentICAO

84 NearestIntersectionCurrentIdent

84 NearestIntersectionCurrentType

84 NearestIntersectionCurrentDistance

84 NearestIntersectionCurrentTrueBearing

85 FSX-only Variables

85 NearestIntersectionSelectedIntersection

85 NearestIntersectionSelectedIntLatitude

85 NearestIntersectionSelectedIntLongitude

85 � NearestIntersectionSelectedRefVorId

85 � NearestIntersectionSelectedRefVorType

85 � NearestIntersectionSelectedRefVorFrequency

85 � NearestIntersectionSelectedRefVorTrueRadial

85 � NearestIntersectionSelectedRefVorMagneticRadial

85 � NearestIntersectionSelectedRefVorDistance

 ix

86 Nearest VOR Group

86 NearestVorCurrentLatitude

86 NearestVorCurrentLongitude

86 NearestVorMaximumItems

86 NearestVorMaximumDistance

86 NearestVorItemsNumber

86 NearestVorCurrentLine

86 NearestVorCurrentICAO

87 NearestVorCurrentIdent

87 NearestVorCurrentType

87 NearestVorCurrentFrequency

87 NearestVorCurrentDistance

87 NearestVorCurrentTrueBearing

87 NearestVorCurrentFilter

89 NearestVorAddVorType

90 NearestVorRemoveVorType

91 NearestVorSetDefaultFilter

92 FSX-only Variables

92 NearestVorSelectedVor

92 NearestVorSelectedVorLatitude

92 NearestVorSelectedVorLongitude

93 NearestVorSelectedVorName

93 � NearestVorSelectedVorCity

93 NearestVorSelectedVorType

93 NearestVorSelectedVorFrequency

93 NearestVorSelectedVorMagneticVariation

94 Nearest NDB Group

94 NearestNdbCurrentLatitude

94 NearestNdbCurrentLongitude

94 NearestNdbMaximumItems

 x

94 NearestNdbMaximumDistance

94 NearestNdbItemsNumber

94 NearestNdbCurrentLine

95 NearestNdbCurrentICAO

95 NearestNdbCurrentIdent

95 NearestNdbCurrentType

96 NearestNdbCurrentFrequency

96 NearestNdbCurrentDistance

96 NearestNdbCurrentTrueBearing

97 FSX-only Variables

97 NearestNdbSelectedNdb

97 NearestNdbSelectedNdbLatitude

97 NearestNdbSelectedNdbLongitude

97 NearestNdbSelectedNdbName

97 � NearestNdbSelectedNdbCity

97 NearestNdbSelectedNdbType

97 NearestNdbSelectedNdbFrequency

98 Nearest Airspace Group

98 NearestAirspaceCurrentLatitude

98 NearestAirspaceCurrentLongitude

98 NearestAirspaceCurrentAltitude

99 NearestAirspaceTrueGroundTrack

99 NearestAirspaceGroundSpeed

99 NearestAirspaceNearDistance

99 NearestAirspaceNearAltitude

99 NearestAirspaceAheadTime

100 NearestAirspaceQuery

102 NearestAirspaceMaximumItems

102 NearestAirspaceMaximumDistance

102 NearestAirspaceItemsNumber

 xi

102 NearestAirspaceCurrentLine

103 NearestAirspaceCurrentName

103 NearestAirspaceCurrentType

103 NearestAirspaceCurrentFrequency

103 NearestAirspaceCurrentFrequencyName

104 NearestAirspaceCurrentMinAltitude

104 NearestAirspaceCurrentMaxAltitude

104 NearestAirspaceCurrentStatus

105 Example Airspace Status and Messages

109 NearestAirspaceCurrentNearDistance

109 NearestAirspaceCurrentAheadTime

110 Message Group

110 MessageItemsNumber

110 MessageCurrentLine

110 MessageCurrentType

110 NewMessagesNumber

110 NewMessagesConfirm

111 ICAO Search Group

111 IcaoSearchInitialIcao

111 IcaoSearchStartCursor

112 IcaoSearchStopCursor

112 Data Entry Methods for ICAOSearch

112 Keyboard Direct Entry

112 Mouse Entry

114 XML Script (code) Entry

114 IcaoSearchAdvanceCursor

114 IcaoSearchAdvanceCharacter

115 IcaoSearchEnterChar

116 IcaoSearchBackupChar

 xii

118 IcaoSearchCursorPosition

118 IcaoSearchCurrentIdent

118 IcaoSearchCurrentIcao

118 IcaoSearchCurrentIcaoType

118 IcaoSearchCurrentIcaoRegion

119 IcaoSearchMatchedIcaosNumber

119 IcaoSearchMatchedIcao

120 Name Search Group

120 NameSearchInitialIcao

120 NameSearchInitialName

120 NameSearchStartCursor

120 NameSearchStopCursor

121 NameSearchAdvanceCursor

121 NameSearchAdvanceCharacter

122 NameSearchEnterChar

122 Data Entry Methods for NameSearch

122 Keyboard Direct Entry

122 Mouse Entry

123 XML Script (code) Entry

124 NameSearchBackupChar

125 NameSearchCursorPosition

125 NameSearchCurrentName

126 NameSearchCurrentMatch

126 NameSearchCurrentIcao

126 NameSearchCurrentIcaoType

126 � � NameSearchCurrentIcaoRegion

 xiii

127 Flight Plan Group

127 Flight Planning

127 Components of the Flight Plan

127 FlightPlanTitle

127 FlightPlanDescription

127 FlightPlanFlightPlanType

128 FlightPlanRouteType

128 FlightPlanCruisingAltitude

128 FlightPlanDepartureLatitude

128 FlightPlanDepartureLongitude

129 FlightPlanDepartureAirportIdent

129 FlightPlanDepartureName

129 FlightPlanDepartureAltitude

129 FlightPlanDestinationLatitude

129 FlightPlanDestinationLongitude

130 FlightPlanDestinationAirportIdent

130 FlightPlanDestinationName

130 FlightPlanDestinationAltitude

130 Comparison to Flight Plan .pln File

131 FlightPlanAlternateAirportIdent

131 FlightPlanAlternateLatitude

131 FlightPlanAlternateLongitude

131 FlightPlanAlternateAltitude

131 FlightPlanAlternateName

132 FlightPlanCruisingAltitude Discussion

134 FlightPlanIsActiveFlightPlan

134 FlightPlanIsLoadedApproach

134 FlightPlanIsActiveApproach

134 FlightPlanIsActiveWaypoint

134 FlightPlanIsDirectTo

134 FlightPlanDirectToWaypoint

 xiv

135 FlightPlanActiveWaypoint

135 FlightPlanActiveApproachWaypoint

135 FlightPlanIsActiveWaypointLocked

136 FlightPlanWaypointsNumber

136 NewWaypoint Group: Creating and Editing a Flight Plan

136 Creating a Flight Plan With XML

136 Editing a Flight Plan

137 Entering New Waypoint Latitude and Longitude

137 FlightPlanNewWaypointLatitude

137 FlightPlanNewWaypointLongitude

137 FlightPlanNewWaypointICAO

138 FlightPlanNewWaypointIdent

139 Assigning a Waypoint Index and Adding the New Waypoint

139 FlightPlanAddWaypoint

139 FlightPlanDeleteWaypoint

140 Example 1: FlightPlanAddWaypoint and FlightPlanDeleteWaypoint

141 FlightPlanDirectToDestination

143 FlightPlanCancelDirectTo

144 Example 2: FlightPlanDirectToDestination and CancelDirectTo

146 Example 3: ActiveWaypointLocked, AddWaypoint and ActiveWaypoint

149 Example 4: Changing the Active Waypoint

150 NewApproach Group: Adding or Changing an Approach

150 FlightPlanNewApproachAirport

150 FlightPlanNewApproachApproach

150 FlightPlanNewApproachTransition

151 FlightPlanNewApproachMissed

151 FlightPlanNewApproachAddInitialLeg

152 FlightPlanLoadApproach

 xv

153 Example 5: Adding or Changing an Approach

154 Example 5.1 NewApproachAddInitialLeg = 0, LoadApproach = 1

156 Example 5.2 NewApproachAddInitialLeg = 1, LoadApproach = 1

157 Example 5.3 NewApproachAddInitialLeg = 2, LoadApproach = 1

158 Example 5.4 NewApproachAddInitialLeg = 3, LoadApproach = 1

159 Example 5.5 NewApproachAddInitialLeg = 0, LoadApproach = 2

160 Example 5.6 NewApproachAddInitialLeg = 1, LoadApproach = 2

161 Example 5.7 NewApproachAddInitialLeg = 2, LoadApproach = 2

162 Example 5.8 NewApproachAddInitialLeg = 3, LoadApproach = 2

163 Example 5.9 NewApproachAddInitialLeg = 0, LoadApproach = 3

165 Example 5.10 NewApproachAddInitialLeg = 1, LoadApproach = 3

166 En Route Navigation

166 FlightPlanWaypointIndex

166 FlightPlanWaypointLatitude

166 FlightPlanWaypointLongitude

166 FlightPlanWaypointAltitude

166 FlightPlanWaypointICAO

166 FlightPlanWaypointIdent

167 FlightPlanWaypointAirwayIdent

167 FlightPlanWaypointType

167 FlightPlanWaypointMinAltitude

169 � FlightPlanWaypointFrequency

169 FlightPlanWaypointMagneticHeading

169 FlightPlanWaypointSpeedEstimate

169 FlightPlanWaypointDistance

169 FlightPlanWaypointDistanceTotal

170 FlightPlanWaypointDistanceRemaining

170 FlightPlanWaypointRemainingDistance

171 FlightPlanWaypointRemainingTotalDistance

 xvi

171 Turn Anticipation

174 FlightPlanWaypointTimeZoneDeviation

174 FlightPlanWaypointETE

174 FlightPlanWaypointATE

174 FlightPlanWaypointEstimatedTimeRemaining

174 FlightPlanWaypointETA

175 FlightPlanWaypointFuelRemainedAtArrival

175 FlightPlanWaypointEstimatedFuelConsumption

175 FlightPlanWaypointActualFuelConsumption

176 Instrument Approaches

179 FlightPlanApproachWaypointType

179 FlightPlanApproachMode

179 FlightPlanApproachSegmentType

179 Approach Segments and Sub-Segments

180 FlightPlanApproachSegmentDistance

180 FlightPlanApproachSegmentLength

180 FlightPlanApproachIsWaypointRunway

180 FlightPlanApproachAirportIdent

181 FlightPlanApproachType

181 FlightPlanApproachIndex

181 FlightPlanApproachName

181 FlightPlanApproachTransitionIndex

182 FlightPlanApproachTransitionName

182 FlightPlanIsApproachFinal

182 FlightPlanIsApproachMissed

182 FlightPlanApproachWaypointsNumber

183 FlightPlanWaypointApproachIndex

183 FlightPlanWaypointApproachICAO

183 FlightPlanWaypointApproachName

183 FlightPlanWaypointApproachType

183 FlightPlanWaypointApproachMode

 xvii

184 FlightPlanWaypointApproachLatitude

184 FlightPlanWaypointApproachLongitude

184 FlightPlanWaypointApproachAltitude

184 FlightPlanWaypointApproachCourse

184 FlightPlanWaypointApproachTarget

186 FlightPlanWaypointApproachLegDistance

187 FlightPlanWaypointApproachLegTotalDistance

187 FlightPlanWaypointApproachLegFromDistance

187 FlightPlanWaypointApproachRemainingDistance

187 FlightPlanWaypointApproachRemainingTotalDistance

188 Miscellaneous

188 Dissecting the KICT ILS19R Approach Segments

192 Sub-Segment Length

193 Fly-By vs. Fly-Over Waypoints

194 Turn Anticipation vs. Amount of Turn

195 Facility Group

196 FacilityICAO

196 FacilityCode

196 FacilityIdent

196 FacilityValid

197 FacilityName

197 FacilityCity

197 FacilityRegion

197 FacilityLatitude

197 FacilityLongitude

197 FacilityMagneticVariation

 xviii

198 GeoCalc Group

198 GeoCalcLatitude1

198 GeoCalcLongitude1

198 GeoCalcLatitude2

198 GeoCalcLongitude2

198 GeoCalcAzimuth1

198 � � GeoCalcAzimuth2

199 GeoCalcLength

199 GeoCalcBearing

199 GeoCalcDistance

200 � � GeoCalcIsIntersect

200 � � GeoCalcIntersectionLatitude

200 � � GeoCalcIntersectionLongitude

200 GeoCalcExtrapolationLatitude

200 GeoCalcExtrapolationLongitude

201 GeoCalcCrossTrack

202 Data Entry and Working with Strings

203 String Operators

204 ASCII Code

204 String Entry Methods

204 Keyboard Direct Entry

206 Mouse Click Entry Using a Keypad Image

208 Concatenation and String Storage

208 5 characters maximum can be stored in a single L:Var

208 Shift Register

210 XMLVars – Custom L:Vars (Tom Aguilo)

213 String Storage Macros (Robbie McElrath)

213 The macros (12 in all)

214 Using the String Storage Macros

 xix

216 Other

216 Storage in internal registers

216 LOGGER XML > HDD > XML (Robbie McElrath)

216 String Storage v2.0.1 (Doug Dawson)

217 <ELEMENT> Display Loops

219 Panel Reload Gauge

220 Bugs, Inops, and Issues

221 fs9gps Guidebook Updates

 1

Introduction

This is an empirical guide for working with the FS9 and FSX gps modules. It’s a
collection of notes on utilization of the fs9gps module, definition and examples of its 386
variables (321 FS9 & FSX plus 65 that are FSX-only), and discussion of some xml coding
techniques that are often used when working with the gps module.

What’s new in v.2.0? Descriptions of the 65 FSX-only gps variables, an expanded
section on Working with Strings and an example of a Reload Panel-Aircraft gauge which
is an XML must-have utility have been added. In addition, many graphics are updated
and, importantly, errors found in v.1.1 have been corrected (for example, Runway
direction variables return True, not Magnetic).

What this Guidebook is not - It isn’t a discussion of the stock gps_500 xml gauge. None
of the 80+ custom @g functions specific to that gauge are discussed. None of those are
necessary to use the full capabilities of the gps module anyway. Nor is this a pilot’s
handbook on the operation of a gps unit. Finally, it does not explain, per se, how to
write sophisticated gauges such as the gps_500 or the Garmin 1000 or autopilots that
use the gps module.

I learned much from forum posts by several gps veterans such as Jan Van Harten, Paul
(PVE), and especially, Tom Aguilo, Roman Stoviak, and Ed Wilson. Luckily, our Gauges
community has some professional and experienced programmers that have always been
willing to offer advice. Bill Leaming heads that list. Still, a significant number of things
having to do with fs9gps are not addressed by MSFT or anywhere in the forums, and
that which is out there is scattered around and vanishing sometimes, so I attempted to
fill in the ‘white space’ and pull it together into one document.

I relied a lot on some important tools such as BlackBox3, LOGGER, XMLVars, and many
fit for purpose xml scripts to study the fs9gps … test, test, test, and re-test. I mention
the tools to acknowledge the contributions of Tom Aguilo (XMLVars) and my son,
Robbie, the author of BlackBox and LOGGER and the professional programmer of the
family.

Bob McElrath
Bangkok, Thailand
July, 2015 (Version 2.0.1)

© 2015 Robert McElrath

 2

Preliminaries

Some odds and ends:

� FS9 Version 9.01 Build 40901.01 was used in development of this guidebook.
For evaluation of the FSX-only variables, FSX Deluxe Build 10.0.61637.0
(FSX-Xpack.20070926-1421).

� Stock FS9 gps database. Not updated with third party navaid, terrain mesh,
or magnetic declination files.

� I indicate gps variables using blue font, NearestNdbCurrentIdent, and xml
code typically in Courier New font, (A:PLANE LATITUDE, degrees) .

� Very often, I abbreviate gps variable names by omitting the Group Name.

For example, in the Flight Plan Data Group, I refer to
FlightPlanWaypointApproachTarget simply as WaypointApproachTarget.

� FS9 xml syntax (FS9 XML schema) is used throughout, not FSX.

� @C macro is frequently used. <Macro Name="C">C:fs9gps</Macro>

� I do not get into the Airport Design Editor world when discussing
Approaches. I discuss only the stock fs9gps variables and approach segment
definitions.

� The aircraft used for sim testing was predominantly Flight 1’s Cessna C421
twin. The aircraft configuration remains unchanged from the default settings
except for correction of the max_indicated_speed and cruise_speed reversal.
Flight simulation testing was performed with wind speed set to zero and gyro
drift disabled.

� An Autopilot was used on all flight testing. FS9’s stock Bendix-King Radio AP.

� Aviation nomenclature used is predominantly USA standard from Federal
Aviation Administration resources (Aeronautical Information Manual,
Instrument Flying Handbook, Instrument Procedures Handbook, in particular)
http://www.faa.gov/library/manuals/aviation/ or Microsoft’s FS9 Help section.

� English units were used in preparation of this guidebook.

� Flight Sim tools and fs9gps resources used: BlackBox3, GPSViewer1.2,
numerous specific use xml gauge scripts, and the gauge and panel sections
of several flight sim forums (AVSIM, FS Developer, Freeflight Design,
FlightSim, Simviation).

 3

FS9 vs. FSX

The FSX gps module is mostly the same as the FS9 version. FSX uses the same variable
groups, same Regions, and has all of the FS9 variables. Both the FS9 and FSX versions
file name is gps.dll. The FS9 version is typically found in the Modules folder in FS9, and
in the root FSX folder in a typical FSX setup.

Methods such as ICAO Transfer and Cycle Skipping apply to both versions of the gps
module.

However, some differences noted include:

� FSX adds 65 new variables. Some do not function, or function correctly, however.

� The FSX database is slightly different. Coordinates of some facilities are changed
and new facilities (for example, new waypoints) have been added.

� The function of some variables is changed / fixed. Examples include:

• FS9 locks the active waypoint after AddWaypoint is used. This does not
occur in FSX (this is an example of a FS9 bug that was fixed).

• FlightPlanWaypointFrequency returns incorrect data in FS9 but this is
fixed in FSX.

� I suspect there are several examples of other, similar changes, but I have not gone
through all of the variables in the FSX module to check.

As far as I know, the FSX gps module is used in at least the early versions of P3D, so I
guess, but I don’t know, that comments in this Guidebook apply to some versions of the
P3D simulation as well. So far, I have not tested the gps module in P3D (any version).
The reader should do their own testing to confirm.

 4

Get, Set, and Units

GET AND SET

Fs9gps variables are classified as follows:

� Get. Read-only. Strings and numbers associated with these variable types can

be displayed in <Elements>.

� Set. Write-only. These are a little more difficult to work with because you
cannot directly display the values entered into these variables in display
Elements. The use of a ‘shadowing’ L:Var is sometimes necessary in order to
view what value was Set. As an example, I use the following to view
confirmation of what was actually entered into the Set-only variable,
FlightPlanLoadApproach:

 (L:LoadApprEnum, enum) d (>c:fs9gps:FlightPlanLoad Approach)

 (>L:LoadApprEnumEntered, enum)

 and then display (L:LoadApprEnumEntered, enum) in an <Element>.

 I have LoadApprEnum to begin with, but if I want to confirm what was really
entered, I need L:LoadApprEnumEntered because FlightPlanLoadApproach
cannot be displayed.

� Get and Set. Read and Write capable.

UNITS

Like other FS variables (e.g., A:, P:, E:), gps variables presume units. Throughout this
guidebook, however, I omit specifying the units for string, enum and bool variables, but
include suggested units for distance, direction, time, speed, and frequency-type gps
variables. The suggested units are not necessarily the default FS units (for example, the
suggested distance unit is nmiles, but FS default distance unit is meters).

Examples:

• (C:fs9gps:NearestVorCurrentFilter) - enum variable

• (C:fs9gps:NearestVorCurrentDistance, nmiles) – distance variable

• (C:fs9gps:NearestVorCurrentFrequency, MHz) – frequency variable

• (C:fs9gps:NearestVorCurrentLongitude, degrees) – direction variable

• (C:fs9gps:NearestVorCurrentICAO) – string variable

 5

fs9gps Variable Groups

There are 321 gps variables in the fs9gps FS9 gps module that are organized into the
following functional data groups:

� Waypoint Data Groups:

• WaypointAirport Group

• WaypointIntersection Group

• WaypointNdb Group

• WaypointVor Group

� Search Data Groups:

• Nearest Search Groups:

o NearestAirport Group

o NearestIntersection Group

o NearestVor Group

o NearestNdb Group

o NearestAirspace Group

• ICAOSearch Group

• NameSearch Group

� Message Data Group

� FlightPlan Data Group

� Facility Data Group

� GeoCalc Data Group

The FSX gps module uses the same functional groups but contains additional variables.

 6

Flight Simulator Regions

The FS9 world is divided into approximately 285 Regions following International Civil

Aviation Organization format. The first letter of the two letter Region code is generally
determined by continent. The second letter generally represents a country within that
continent. The exception is some larger countries that have single-letter country codes
such as the USA which uses country code “K”.

The Region code is part of the fs9gps ICAO Identifier, in character positions 2 and 3.

A Western South Pacific
AG Solomon Islands
AN Nauru
AY Papua New Guinea
B Iceland/Greenland and Kosovo
BG Greenland
BI Iceland
BK Kosovo

C Canada
C Canada (Multiple)

D West Africa
DA Algeria
DB Benin
DF Burkina Faso
DG Ghana
DI Côte d'Ivoire
DN Nigeria
DR Niger
DT Tunisia
DX Togolese Republic

 7

E Northern Europe
EB Belgium
ED Germany (civil)
EE Estonia
EF Finland
EG United Kingdom
EH Netherlands
EI Ireland
EK Denmark
EL Luxembourg
EN Norway
EP Poland
ES Sweden
ET Germany (military)
EV Latvia
EY Lithuania

F Southern Africa
FA South Africa
FB Botswana
FC Republic of the Congo
FD Swaziland
FE Central African Republic
FG Equatorial Guinea
FH Ascension Island
FI Mauritius
FJ British Indian Ocean Territory
FK Cameroon
FL Zambia
FM Comoros, Madagascar, Mayotte,

Réunion
FN Angola
FO Gabon
FP São Tomé and Príncipe
FQ Mozambique
FS Seychelles
FT Chad
FV Zimbabwe
FW Malawi
FX Lesotho
FY Namibia
FZ Democratic Republic of the

Congo

G Northwestern Africa
GA Mali
GB The Gambia
GC Canary Islands (Spain)
GE Ceuta and Melilla (Spain)

GF Sierra Leone
GG Guinea-Bissau
GL Liberia
GM Morocco
GO Senegal
GQ Mauritania
GS Western Sahara
GU Guinea
GV Cape Verde

H Northeastern Africa
HA Ethiopia
HB Burundi
HC Somalia (including Somaliland

because of disputes)
HD Djibouti (also HF)
HE Egypt
HF Djibouti (also HD)
HH Eritrea
HK Kenya
HL Libya
HR Rwanda
HS Sudan
HT Tanzania
HU Uganda

K United States (excluding

Alaska and Hawaii)
K Contiguous United States

(K1, K2, K3 … K7)

L Southern Europe, Israel and

Turkey
LA Albania
LB Bulgaria
LC Cyprus
LD Croatia
LE Spain
LF France, including Saint-Pierre

and Miquelon
LG Greece
LH Hungary
LI Italy
LJ Slovenia
LK Czech Republic
LL Israel
LM Malta
LN Monaco
LO Austria

 8

LP Portugal, including the Azores
LQ Bosnia and Herzegovina
LR Romania
LS Switzerland
LT Turkey
LU Moldova
LV Areas Under the Control of the

Palestinian Authority
LW Macedonia
LX Gibraltar
LY Serbia and Montenegro
LZ Slovakia

M Central America and Mexico
MB Turks and Caicos Islands
MD Dominican Republic
MG Guatemala
MH Honduras
MK Jamaica
MM Mexico
MN Nicaragua
MP Panama
MR Costa Rica
MS El Salvador
MT Haiti
MU Cuba
MW Cayman Islands
MY Bahamas
MZ Belize

N South Pacific
NC Cook Islands
NF Fiji, Tonga
NG Kiribati (Gilbert Islands), Tuvalu
NI Niue
NL Wallis and Futuna
NS Samoa, American Samoa
NT French Polynesia
NV Vanuatu
NW New Caledonia
NZ New Zealand, Antarctica

O Southwest Asia (excluding

Israel and Turkey),
Afghanistan and Pakistan

OA Afghanistan
OB Bahrain
OE Saudi Arabia
OI Iran

OJ Jordan and the West Bank
OK Kuwait
OL Lebanon
OM United Arab Emirates
OO Oman
OP Pakistan
OR Iraq
OS Syria
OT Qatar
OY Yemen

P Eastern North Pacific
PA Alaska only
PB Baker Island
PC Kiribati (Canton Airfield, Phoenix

Islands)
PF Fort Yukon, Alaska
PG Guam, Northern Marianas
PH Hawaii only
PJ Johnston Atoll
PK Marshall Islands
PL Kiribati (Line Islands)
PM Midway Island
PO Oliktok Point, Alaska
PP Point Lay, Alaska
PT Federated States of Micronesia,

Palau
PW Wake Island

R Western North Pacific
RC Republic of China (Taiwan)
RJ Japan (most of country)
RK South Korea
RO Japan (Okinawa Prefecture and

Yoron)
RP Philippines

S South America
SA Argentina
SB Brazil (also SD, SI, SJ, SN, SS

and SW)
SC Chile
SD Brazil (also SB, SI, SJ, SN, SS

and SW)
SE Ecuador
SF Falkland Islands
SG Paraguay
SI Brazil (also SB, SD, SJ, SN, SS

and SW)

 9

SJ Brazil (also SB, SD, SI, SN, SS
and SW)

SK Colombia
SL Bolivia
SM Suriname
SN Brazil (also SB, SD, SI, SJ, SS

and SW)
SO French Guiana
SP Peru

SS Brazil (also SB, SD, SI,
SJ, SN and SW)

SU Uruguay
SV Venezuela
SW Brazil (also SB, SD, SI, SJ, SN

and SS)
SY Guyana

T Caribbean
TA Antigua and Barbuda
TB Barbados
TD Dominica
TF Guadeloupe
TG Grenada
TI U.S. Virgin Islands
TJ Puerto Rico
TK Saint Kitts and Nevis
TL Saint Lucia
TN Netherlands Antilles, Aruba
TQ Anguilla
TR Montserrat
TT Trinidad and Tobago
TU British Virgin Islands
TV Saint Vincent and the Grenadines
TX Bermuda

U Russia and former Soviet

States
U Russia (except UA, UB, UD, UG,

UK, UM and UT)
UA Kazakhstan, Kyrgyzstan
UB Azerbaijan
UD Armenia
UG Georgia
UK Ukraine
UM Belarus and Kaliningrad, Russia
UT Tajikistan, Turkmenistan,

Uzbekistan

V South Asia (except
Afghanistan and Pakistan),
mainland Southeast Asia,
Hong Kong and Macau

VA India (West Zone, Mumbai
Center)

VC Sri Lanka
VD Cambodia
VE India (East Zone, Kolkata

Center)
VG Bangladesh
VH Hong Kong
VI India (North Zone, Delhi Center)
VL Laos
VM Macau
VN Nepal
VO India (South Zone, Chennai

Center)
VQ Bhutan
VR Maldives
VT Thailand
VV Vietnam
VY Myanmar

W Maritime Southeast Asia

(except the Philippines)
WA Indonesia (also WI, WQ and WR)
WB Malaysia (East Malaysia), Brunei
WI Indonesia (also WA, WQ and
WR)
WM Malaysia (Peninsular Malaysia)
WP Timor-Leste
WQ Indonesia (also WA, WI and WR)
WR Indonesia (also WA, WI and WQ)
WS Singapore

Y Australia
Y Australia (multiple)

Z East Asia (excluding Hong

Kong, Japan, Macau, South
Korea and Taiwan)

Z People's Republic of China
(except ZK and ZM)

ZK North Korea
ZM Mongolia

 10

 11

 12

ICAO
As defined by the GPS module

In the gps module, ICAO is defined as the 12 character long unique identification string
for all facilities in the fs9gps database. It is required for access to almost all of the
variables within the Waypoint Groups, where most of the fs9gps database information is
located.

All single point facilities (Airport, VOR, NDB, Intersection) in the database have a unique
ICAO. Airspaces are not single point facilities and do not have an ICAO.

ICAO Examples

Character Position

FACILITY TYPE SLEN 1 2 3 4 5 6 7 8 9 10 11 12

Airport 12 A E G N X

Airport 12 A W 3 6

ILS 12 V K A S T I A S T

VOR 12 V E G M I D

Intersection 12 W K 3 K 8 8 A B U Y A

Waypoint 12 W V T V T B D C F 0 3 R

NDB 12 N P A C M Q

NDB 12 N E B E B B R O Z

Runway 12 R K 3 K I C T R W 1 9 R

Type Region Owning Airport Ident Facility Ident

The ICAO is assembled from four parts that are concatenated to form the 12 character
ICAO identifier:

� Type. Character position 1. A single letter representing the type of facility.

o “A” = Airport
o “V” = VOR, ILS, LOC
o “N” = NDB

o “W” = Waypoint, Intersection
o “R” = Runway
o “X” = NDB

� Region. Character positions 2 and 3. The two letter FS Region code. Note that

the Airport Group, which includes ILS and LOC, does not include Region in the
ICAO (which is why WaypointAirportRegion always returns a blank string).

 13

� Owning Airport Ident. Character positions 4 through 7. For navigation
facilities (ILS, NDB) and points (Waypoints, Intersections) that are part of an
approach procedure in the fs9gps database, the Ident of the airport to which the
procedure belongs is indicated. Without Owning Airport Ident, the ICAO would
not be unique for Computer Navigation Fix and unnamed waypoints. As an
example, ‘CF19R’ is the Ident of a computer fix waypoint which may be part of

an approach at multiple airports having a runway 19R. Without including the
associated, or owning, airport, the ICAO “WK3_ _ _ _CF19R” would probably not

be unique. However, adding the owning airport Ident makes it unique,
“WK3KICTCF19R”.

� Ident. _Ident ≠ ICAO_ Character positions 8 through 12. The one to five

character long Ident of the facility. Rather than the full ICAO, Ident is the more
common facility abbreviation, like KLAX for Los Angeles International Airport.
However, Ident is also sometimes confused with the full 12 character "ICAO"
even in Microsoft FS documentation (for example, Microsoft ESP; Panels and
Gauges SDK; XML Gauge Maps; TextDetailLayerAirports).

Note that while the full 12 character fs9gps ICAOs are unique, Idents are not
necessarily unique other than airport Idents; there are many occurrences in the
database of VORs having the same 3 letter Ident. When working with the gps
module, it is sometimes useful to remember that all airport Idents in the fs9gps
database are unique, but Idents for other facilities are not necessarily unique.

ICAO String Length

The String Length (SLEN) of an ICAO is always 12, even in cases where the Ident is not
5 characters long. However, when directly entering an ICAO, such as:

' A_ _ _ _ _ _W36' (>C:fs9gps:WaypointAirportICAO)

it is acceptable to omit the trailing spaces of the Ident if five characters are not used. In
other words,

' A_ _ _ _ _ _W36_ _' is not necessary.

 14

GPS Database Search: Search > Index > Display

Most information needed from the fs9gps database must be obtained through a
sequence of 1) Search (Extract), 2) Index, and then 3) Display. It is important to
understand that the gps database search step can be computationally intensive,
requiring time to complete. Usually, several gauge update cycle pass before the gps
module finishes data retrieval and to accommodate this, the gps module must operate
asynchronously with the other gauges of the panel set. Consequently, data cannot be
retrieved from the database and then displayed or otherwise utilized in the same gauge
update cycle that the database search was initiated because of the time required by the
gps module to complete the search.

SEARCH (and EXTRACT)

Search is the action of requesting and receiving a small (tiny) portion of the global data
base for subsequent manipulation by the gauge – manipulation that can be as simple as
display of the information.

A database Search is defined by specifying 1) the type of information desired, 2) the
geographic location of interest, and 3) the amount of information (the limit) the user
wants to extract from the gps data base. For example, if a list of VORs nearest the
aircraft is needed, a NearestVor search can be initiated using the following statements:

(A:PLANE LATITUDE, degrees)
(>c:fs9gps:NearestVorCurrentLatitude, degrees)

(A:PLANE LONGITUDE, degrees)
(>c:fs9gps:NearestVorCurrentLongitude, degrees)

20 (>c:fs9gps:NearestVorMaximumItems, enum)
100 (>c:fs9gps:NearestVorMaximumDistance, nmiles)

From these instructions, the gps engine knows the type of information requested
(nearest VORs), the geographic location of interest (lat and lon of the aircraft) and the
maximum amount of information desired (max items and max search distance, or
radius).

As soon as these statements are executed, a gps database search automatically begins.
Some amount of time, however small, is required to extract the data, so you must wait
for database search results to be delivered. How many gauge update cycles you wait is
predominantly a function of the amount information requested: max distance and max
items. In the stock gps_500 xml gauge, max items and max distance values are set low
(e.g., lines 416-419, max items = 9, matching the real Garmin GNS 500 series GPS
Units) and it seems that data are sometimes displayed almost instantly. However, if one
wants a list of nearest airports within 1000 nmiles of Chicago O’Hare airport with a max
item limit of 10,000, be prepared to wait. That order will take a minute or so to
prepare. Regardless of the gauge update cycle rate, several, and in unrealistically large
searches, thousands of update cycles may pass before search and extract is complete.

 15

The figure below shows the gauge update cycle wait plotted against MaximumItems for
an arbitrary NearestVor search. Three things are noteworthy:

� First, retrieval of just one item in this particular NearestVor search required 4
gauge update cycles before the retrieved data could be accessed and stored as
an L:Var, or even just displayed on the screen.

� Second, the same number of gauge update cycles are required for the search
regardless of gauge update cycle frequency. So, the key is to wait on update
cycles, not absolute elapsed time, for data retrieval.

� Third, the bigger the search, the longer the wait.

Database Retrieval Times

0

10

20

30

40

50

60

70

0 100 200 300 400 500

NearestVorMaximumItems = NearestVorItems Number

W
a

it
 P

e
ri

o
d

 (
c
y

c
le

s
)

2 Cycles Per Second

9 Cycles Per Second

18 Cycles Per Second

Multiple update cycle database operations include (there may be more):

1) Nearest searches

2) ICAO transfer

3) 0 (>@c:FlightPlanIsActiveWaypointLocked) following a

(>@c:FlightPlanAddWaypoint) (FS9 only)

4) ICAO transfers necessary for use of FSX WaypointVor & NbdNearestAirport
variables

 16

Does this matter? Often, no. Waiting on data extraction may not harm the function of
the gauge you are building. This is especially true if searches are simple and retrieved
data are only displayed on the screen, which describes most searches used in the
gps_500 gauge. For example, a display loop within an <Element> could, in effect, just
sit there displaying blank lines, waiting for search data to become available, and it does
not matter how few or how many update cycles pass before that happens. Often, the
delay is short, almost imperceptible, and of no consequence.

However, there are situations where the user must wait until data have been retrieved
from the database before executing subsequent code. These situations, as well as
knowing how many gauge update cycles to wait, are the topics of the Asynchronous
Operation section.

INDEX POINTER

Much of the information retrieved from the gps database is organized in the form of
lists: the list of nearest airports or VORs, the list of radio frequencies or runways at an
airport, the list of waypoints in a Flight Plan. In a list of nearest airports, for example,
all retrieved data from a specific, individual airport can be thought of as occupying one
line of the list. The lines are numbered, or indexed, and to display or access data from
any particular line, the line number must first be specified. This is accomplished by
assigning a number to an index pointer such as the CurrentLine or Index variable.

2 (>c:fs9gps:NearestVorCurrentLine, enum)

selects the third VOR of a NearestVor list (indices start at 0 for the first line).

The CurrentLine / Index pointers and Total Number variables in fs9gps include:

Index Pointer

WaypointAirportCurrentFrequency

WaypointAirportCurrentRunway

WaypointAirportCurrentApproach

WaypointAirportApproachCurrentTransition

NearestAirportCurrentLine

NearestIntersectionCurrentLine

NearestVorCurrentLine

NearestNdbCurrentLine

NearestAirspaceCurrentLine

FlightPlanWaypointIndex

IcaoSearchMatchedIcao

MessageCurrentLine

FlightPlanWaypointApproachIndex

ITrafficInfo:CurrentVehicle

Total Number

WaypointAirportFrequenciesNumber

WaypointAirportRunwaysNumber

WaypointAirportApproachesNumber

WaypointAirportApproachTransitionsNumber

NearestAirportItemsNumber

NearestIntersectionItemsNumber

NearestVorItemsNumber

NearestNdbItemsNumber

NearestAirspaceItemsNumber

FlightPlanWaypointsNumber

IcaoSearchMatchedIcaosNumber

MessageItemsNumber

FlightPlanApproachWaypointsNumber

ITrafficInfo:ListSize

 17

Index Pointer (FSX-Only Variables)

WaypointAirportApproachCurrentLeg

NearestAirportSelected

NearestAirportCurrentFrequency

NearestAirportSelectedFrequencyIndex

NearestAirportSelectedRunway

NearestAirportCurrentApproach

NearestAirportSelectedApproachIndex

NearestNdbSelectedNdb

NearestVorSelectedVor

NearestIntersectionSelectedIntersection

WaypointAirportSelectedFrequencyIndex

Total Number (FSX-Only Variables)

WaypointAirportApproachNumberLegs

NearestAirportItemsNumber

NearestAirportSelectedNumberFrequencies

NearestAirportSelectedNumberFrequencies

NearestAirportSelectedAirportRunwaysNumber

NearestAirportSelectedNumberApproaches

NONE

NearestNdbItemsNumber

NearestVorItemsNumber

NearestIntersectionItemsNumber

NONE

The table below shows the results of a NearestVor search. It demonstrates the line-by-
line list nature of the retrieved data and the different types of VOR information available
from a FS9 NearestVor search - the ICAO, VOR Ident, Type, Frequency, Distance and
True Bearing to VOR. The nearest VOR to the reference latitude and longitude is
CurrentLine=0 (Index 0), the FFA VOR, which is 12.4 nmiles distant.

 18

DISPLAY (use of the extracted data)

Extracted data are either displayed to the pilot on the screen of a gauge like the
gps_500, or used in calculations in the gauge’s code. In either case, the Index pointer /
CurrentLine must first be specified to access any information that is indexed, that is in
the form of a list. It’s important to note that defining the index value and then display
or other calculation using the extracted data occur in the same gauge update cycle.
Only the database search or an ICAO Transfer consume multiple gauge update cycles.

Simple displays of extracted lists are common. The easiest way to do this is through the
use of {loop} … {next} in a <String> section within an <Element>. The xml used to
display the NearestVor list is shown below:

 19

The display is constructed one line at a time as the required index pointer,
NearestVorCurrentLine, is incremented each pass through the loop. Line 82 is the
indexing action, lines 83 through 89 are the display instructions for the list of VORs, and
line 90 is the ‘incrementer’. Display Loops are discussed further in the <ELEMENT>
DISPLAY LOOPS chapter.

Similarly, data used in calculations rather than screen display must first be extracted
from the database, then an index pointer specified.

2 (>c:fs9gps:NearestVorCurrentLine, enum)

places the index pointer to the third line of the NearestVor data extraction. Then, in the
case of the NearestVor search above,

(C:fs9gps:NearestVorCurrentFrequency, MHz) returns 111.90.

In another gauge in the panel, (C:fs9gps:NearestVorCurrentFrequency, MHz)

will return 0.00 (or be empty for a string value) because indexed gps variables are local
to the host gauge. As Tom Aguilo pointed out in one of his forum posts (edited to
address NearestVor):

“the visibility/status of an indexed gps var is local to the gauge itself - its "instance" - In
the other gauge case, NearestVorCurrentFrequency is a different "instance" of the same
NearestVorCurrentFrequency found in the gauge containing the NearestVor search,
therefore it needs to be initialized too.

There are other gpsvars that are "public", or visible through the entire panelset, for
example FlightPlanIsActiveFlightPlan, FlightPlanTitle, etc.

It is important to add also that gpsvar names are case sensitive.”

 20

Asynchronous Operation
Cycle skipping techniques

Information requested in an fs9gps database search is usually not available for use by
the gauge, even for simple data display, in the same gauge update cycle that the search
is initiated. Often, this causes no problems and it does not need to be addressed.
There are some situations, however, where it may or probably will adversely affect
subsequent code if that code requires the results of the database search before its
execution begins. Because of this, it may be necessary to use cycle skipping techniques
to delay execution of code that uses the requested data until they become available.

 Recapping some discussion from the
GPS Database Search section:

� even small searches can require

several cycles for data retrieval
� waiting on gauge update cycles

rather than absolute elapsed time for
data retrieval is the key
� the bigger the search (i.e., the more

items), the longer the wait

Database Retrieval Times

0

10

20

30

40

50

60

70

0 100 200 300 400 500

NearestVorMaximumItems = NearestVorItems Number

W
a

it
 P

e
ri

o
d

 (
c
y

c
le

s
)

2 Cycles Per Second

9 Cycles Per Second

18 Cycles Per Second

WHEN IS CYCLE SKIPPING NECESSARY?

The question is not whether a particular fs9gps operation is multi-cycle, that is, whether
it requires multiple gauge update cycles to complete. The important concern is whether
or not execution of subsequent code that uses search data results must be carefully
timed to not begin until search data are retrieved from the database.

Consider a situation where one may want to find the nearest seaplane base. There are
a couple of ways to approach this depending upon what you want to do afterward. For
the purposes of this section, one way is to perform a NearestAirport search, then in
<Update>, loop through the NearestAirport search results list incrementing the Index
pointer (NearestAirportCurrentLine) by 1 each gauge update cycle, searching for an
airport with NearestAirportCurrentAirportKind = 3, which is a seaplane base.

The following xml <Update> examples demonstrate what happens if the loop through
the NearestAirport list begins before the NearestAirport search has returned data, and
two cycle skipping techniques that can be used to “wait” for the Nearest search to
conclude before starting the loop through the search result list.

Following that is a discussion of the cycle skipping requirements associated with ICAO
Transfers.

 21

Cycle Skip Example 1 – Nearest Searches

The following shows the aircraft position and the results of a NearestAirport search.
Search parameters specify 100 maximum items and a 100 nmile maximum distance.
The search is completed, returning the maximum list of 100 airports, on the 6th update
cycle. The nearest Airport is Snohomish County (KPAE), while the nearest seaplane
base is Kenmore Air Harbor Inc. Seaplane Base (S60).

 22

What happens when no cycle skipping code is used?

The following code initiates the NearestAirport and begins inspecting the search results,
looking for a seaplane base, in the same gauge update cycle that the Nearest search
begins:

� Lines 3–12: Search RESET. The gauge that this code snippet is from contains

a Gauge Reset mouse click button. Clicking it performs the following:

1 (>L:NrstAptSearchReset, enum)

 (A:Fuel weight per gallon, pounds per gallon) 0 ==

 if{ (>K:RELOAD_USER_AIRCRAFT) } // FSX

 els{ (>K:RELOAD_PANELS) } // FS9

 23

Refer to the Panel Reload Gauge chapter for more information about this very useful

Reload tool.

Then, in the subsequent gauge update cycle, lines 5 through 11 are executed.

� Lines 24–35: Loop through the NearestAirport search results list looking for

the first occurrence of NearestAirportCurrentAirportKind = 3. When found, LVars
L:NrstSeaBaseDist and L:NrstSeaBaseTruBrg are written and the

looping stops, 0 (>L:LoopingThroughNearestAirportList, bool) .

In this example, looping through the NearestAirport list looking for a seaplane base
begins in the same gauge update cycle as the start of the NearestAirport search itself.

The Problem:

Code That Uses Results of the Database Search Starts Too Soon

The problem is that 5 gauge update cycles are consumed before the gps database
completes its search for 100 airports within 100 nmiles and the NearestAirport list is
returned.

By the 5th gauge update cycle, the loop that checks the search results is already at
L:IndexPointer = NearestAirportCurrentLine = 4. Starting at this point in the search
results list, the first seaplane base (CurrentAirportKind = 3) found will be in CurrentLine
6, Airport Ident W55, which is not the nearest seaplane base to the aircraft.

The conclusion is that code that looks through the search results for Seaplane Bases
should not start in the same gauge update cycle that the nearest airport search itself
begins. Instead, it should begin execution after the database search produces the list of
nearest airports. In other words, code that relies on results of a database search must
be delayed until the search concludes.

The solution is to utilize a cycle skipping process to delay execution of the code.

 24

Cycle Skip Technique 1 - Cycle Counting

The next script example employs a cycle counting routine that delays execution of the
loop that checks for the first seaplane base until a prescribed number of gauge update
cycles have passed since the NearestAirport search was initiated. The goal is to give the
NearestAirport search time to return results before looking through the nearest airport
list for a seaplane base.

� Lines 3-12: The following cycle count parameters have been added:

 -1 (>L:NrstArptSearchCycleSkipCounter, enum) and

 4 (>L:NrstArptSearchCyclesToSkip, enum)

� Line 9: The cycle skip counter. It is reset to 0 when the Search RESET
mouse button is clicked.

� Line 10: The pre-selected number of update cycles to skip.

 25

� Line 21: The cycle skip counter is incremented by 1 each update cycle.

� Lines 21-22: When the cycle skip counter is greater than the number of
cycles to skip, looping through the NearestAirport search list is allowed to begin
(lines 24-34).

When L:NrstArptSearchCyclesToSkip is set too low, lines 24-34 begin

execution before the NearestAirport search has returned data, and the same thing
happens as in the first example, and the nearest seaplane base may be missed because
the L:IndexPointer = NearestAirportCurrentLine may be already past it before
NearsetAirport results are available.

In this example, when L:NrstArptSearchCyclesToSkip = 3 or less, the first

seaplane base found is ident W55, which is incorrect. When CyclesToSkip is set to 4

or more, the first seaplane base found is ident S60, which is correct.

 26

Cycle Skip Technique 2 - Let fs9gps tell you when it’s ready

In this example, progress of the NearestAirport search is checked each gauge update
cycle.

Line 22 checks if NearestAirportItemsNumber, which is the total number of airports
found in the nearest airport search, is greater than zero. When starting the database
search, this value is zero, but when the NearestAirport search returns data,
ItemsNumber reflects the number of airports found.

Assuming the NearestAirport search found at least one airport within the specified
search distance, ItemsNumber becomes greater than zero, and only then are lines 24-34
executed. This time, the NearestAirport list is available before the loop begins and the
nearest seaplane base, S60, is not bypassed.

 27

This technique is employed in the FS9 gps_500 gauge where screen display loop of
Nearest search results does not begin until ItemsNumber value is non-zero (for example,
see line 2016).

As a side comment, it isn’t absolutely necessary that the gps_500 does that in this
particular situation – to delay a display loop until the search concludes. If the user is
simply displaying the Nearest list, the display script will just display blank values until the
search concludes, at which point, the full list will be displayed as normal.

Edit line 2016 to read:

%((@c:NearestAirportItemsNumber) s2)

and delete lines 2017 and 2034 to check this.

 28

Cycle Skip Example 2 – ICAO Transfers

Cycle Skip Technique - Cycle Count (“Let fs9gps tell you” is not available)

Similar to Nearest searches, ICAO Transfers are a multi-cycle operation. Data from the
Waypoint Group are not available during the same update cycle that the ICAO Transfer
is executed. In some circumstances, data may not be accessible even in the subsequent
cycle and a cycle counting technique to skip more than one cycle is needed.

Building on the NearestAirport-seaplane base search example, the following statements
have been added to the example script: a NearestAirport to WaypointAirport ICAO
Transfer, cycle counting code following the ICAO Transfer, and a WaypointAirport Group
write-to-LVar statement.

� Line 33: The ICAO Transfer. NearestAirport to WaypointAirport Group.

� Line 34: Write WaypointAirportLatitude to an LVar, same cycle as ICAO Xfer.

� Line 35: Write WaypointAirportLongitude to an LVar, same cycle as ICAO Xfer.

� Lines 42 –51:

• If Line 36 LoopingThroughNearestAirportList is set to 2, then

Lines 44 – 0 will be executed, otherwise they won’t.

• Starting in Line 44, the ICAOXferCycleSkipCounter is incremented

by one each update cycle.

• Only when it is equal to or greater than the prescribed
ICAOTransferCyclesToSkip (Line 45),

• are the WaypointAirport Group variables Latitude and Longitude written
to LVars (Lines 47, 48).

• Finally, Line 49 sets LoopingThroughNearestAirportList to zero,
terminating the entire Nearest Search and ICAO Transfer process.

� Lines 5 –13: Resets cycle counters and LVar values.

Note that in the following <Update> section, LVAR write statements (Lines 36, 37) are
included immediately following the ICAO Transfer (Line 35) to illustrate that the
WaypointAirport Group variables including Latitude and Longitude are not accessible in
the same cycle as the ICAO Transfer.

However, duplicate LVAR write statements (Lines 47, 48) are also included in a cycle
count sequence (Lines 44 through 50) that follows the ICAO transfer to show that the
WaypointAirport Group variables including Latitude and Longitude are ultimately
accessible after a one gauge cycle delay.

 29

When Line 36 is set to zero, the loop terminates after the LVar write statements (Lines
34, 35) that follow the ICAO Transfer (Line 35). The WaypointAirport variables Latitude
and Longitude are not yet accessible, so the LVars remain 0.0000, as shown below.

 30

Similarly, when Line 36 is set to 2, but with ICAOXferCyclesToSkip = 0 (Line 8),

then the LVar write statements again occur in the same update cycle as the ICAO
Transfer, the WaypointAirport variables Latitude and Longitude are not yet accessible,
and the LVars remain 0.0000, as shown below (see lower right corner of the figure).

However, if Line 36 is set to 2 and Line 8, the CyclesToSkip variable, is edited to read:

1 (>L:ICAOXferCyclesToSkip, enum)

then the write statements in Lines 47 & 48 are delayed one update cycle from the ICAO
Transfer and the WaypointAirport Lat & Lon for seaplane base S60 are now accessed:

 31

An important note is that in some circumstances, skipping more than one gauge
update cycle following an ICAO Transfer may be required before the Waypoint
Group variables are accessible. With ICAO Transfers, unfortunately there is no gps
variable that can be used with the “let fs9gps tell you when it is ready” technique, so
cycle counting is necessary. Reading through the forums, you may run across examples
advocating the use of cycle skipping toggles – very simple code that results in a one
cycle skip. But if you unknowingly run into the situation where you need to skip more
than one cycle following an ICAO Transfer but have used a single-cycle toggle, then
figuring out what is wrong with your code can be pretty frustrating. Been there, done
that. Experiment to determine what you need, but to be safe, skip 4 cycles.

To get a better sense of the sequence of events, slow the update frequency rate (Line
1) down to 2, and watch the display after Gauge Reset (lines 5 – 13) is executed. You
should be able to discern the slight hesitation during the Nearest search, before the
NearestAirport list is displayed. Next, the NearestAirport LVar values appear, followed a
moment later by the WaypointAirport LVar values.

Cycle skipping not critical if data only displayed

Finally, just to demonstrate a point, the LVar assignments could have been pulled out of
the loop and placed by themselves elsewhere in the Update section as shown below.
This results in continuous* writing of WaypointAirportLatitude and Longitude to LVars.
That would eliminate the need for specific cycle skipping code because, eventually, the
ICAO Transfer is completed, the Waypoint Group variables are finally accessible, and the
WaypointAirport Latitude and Longitude will be written to the LVars.

* It is not a best practice to continuously execute code in the Update section when it is
not necessary, so this code snippet is just for the purpose of illustrating a point.

 32

ICAO SEARCH – No Cycle-Skipping Required

ICAOSearch is a single cycle operation, therefore, no cycle skipping code is required
after ICAOSearch and before an ICAO Transfer.

 33

CONDITIONAL TEXT DISPLAY

The section, “When Is Cycle Skipping Necessary?”, began by saying that depending
upon what the user wants to do next, there are alternative approaches to finding the
nearest seaplane base. If simple display of the list of nearest seaplane bases is all that is
required and no ICAO Transfer is needed, then conditional text display statements can
be used to display only NearestAirportCurrentAirportKind = 3 airports, thus eliminating
the need for the loop through the NearestAirport list in the <Update> section.

The display Element I use to display all of the nearest airports is:

To display only AirportKind = 3, Lines 83, 84, and 97 are added as follows:

 34

which results in the following screen display:

 35

ICAO Search Example

The following demonstrates the ICAOSearch process of retrieving a facility ICAO given
the StartCursor search filter and facility Ident. It’s a situation that could arise if the user
needs the latitude and longitude of a particular VOR when the Ident is known,
something that cannot be done simply with A:Vars. A solution would be to 1) perform
ICAOSearch to retrieve the VOR’s ICAO, then, 2) transfer the ICAO to the WaypointVor
or Facility Group to gain access the VOR’s Lat and Lon.

As an example, “What’s the Lat and Lon of the Corvallis, Oregon, USA VOR (Ident =
“CVO”)?”

STEP 1 - ICAOSearch. ICAOSearch has two required inputs, the search filter
IcaoSearchStartCursor, and the facility Ident which is entered using the variable
IcaoSearchEnterChar.

Before entry begins, all strings and enums in the ICAOSearch Group are blank and zero.

1.1 – First, enter the ICAOSearch filter, IcaoSearchStartCursor. ICAOSearch always
begins by entering IcaoSearchStartCursor. In this example, it is ‘V’ for VOR. A

keyboard direct entry statement would be in the form of:

<On Key="AlphaNumeric">

<Visible> (L:AlphaNumericEntryEnable, enum) 101 == </Visible>

(M:Key) chr (>C:fs9gps:IcaoSearchStartCursor)

</On>

An equivalent statement:

'V' (>C:fs9gps:IcaoSearchStartCursor)

After the ICAO search filter has been entered, ICAOSearch immediately returns the first
ICAO that matches the criterion. In this case, CurrentIcaoType is “V”, and the first VOR

Ident in the database is 1CD (CurrentIdent). VCY_ _ _ _1CD_ _ is the associated

ICAO.

The Region is CY, and is part of the 12 character ICAO. There is only one VOR with the

Ident 1CD in the fs9gps database, hence MatchedIcaosNumber = 1. Icao Search

variables

(C:fs9gps:IcaoSearchMatchedIcaosNumber)

(C:fs9gps:IcaoSearchMatchedIcao)

(C:fs9gps:IcaoSearchCurrentIcao)

 36

yield the following:

MatchedIcaosNumber: 1

ICAO 1 1
Index 1 2 3 4 5 6 7 8 9 0 1 2

0 V 1 C D

At this point, only StartCursor has been entered. No Ident search string, or portion of
the Ident, has been entered yet.

1.2 – Next, begin entering the Ident using IcaoSearchEnterChar. “C” is entered.

'C' (>C:fs9gps:IcaoSearchEnterChar)

IcaoSearchEnterChar is the heart of the ICAOSearch. It is how Ident is entered. The
ICAOSearch engine subsequently searches the database and returns an ICAO that
matches the ICAO Type defined by StartCursor and the Ident defined by EnterChar.

After “C” is entered, the following automatically occurs:

� The CursorPosition advances one place to Position 1, ready for the next
character of the Ident to be entered.

� The first VOR Ident in the fs9gps database that begins with “C” is the CA VOR.

Its ICAO is V_ _SOCACA_ _ _. From this ICAO one can tell that it is an ILS or

LOC because Region is blank and the owning airport, SOCA, is listed in character

positions 4 through 7. MatchedIcaosNumber is 1, meaning that there is only one
VOR in the database with Ident = ‘CA’ .

MatchedIcaosNumber: 1

ICAO 1 1
Index 1 2 3 4 5 6 7 8 9 0 1 2

0 V S O C A C A

“V SOCACA” is the ILS/DME 08 at Rochambeau Airport, Cayenne, French Guiana.

1.3 – IcaoSearchEnterChar. “V” is entered.

'V' (>C:fs9gps:IcaoSearchEnterChar)

After “V” was entered, the following automatically occurs:

 37

� “C”, previously entered, and “V” are concatenated to form “CV”.

� The CursorPosition advances one place to Position 2, ready for the next
character of the Ident to be entered.

� ICAOSearch returns three VORs whose Ident is 'CV':

MatchedIcaosNumber: 3

ICAO 1 1
Index 1 2 3 4 5 6 7 8 9 0 1 2

0 V E G D C C V
1 L F K C C V
2 V Y B C V

1.4 – IcaoSearchEnterChar. Lastly, “O” is entered.

'O' (>C:fs9gps:IcaoSearchEnterChar)

After “O” is entered, the following automatically occurs:

� “CV” and “O” are concatenated to form “CVO”. Entry of the “CVO” Ident is now

complete. Even though keyboard direct entry always is a “one letter at a time”
entry process, use of a shift register in the <On> statement is not necessary.
The gps module automatically concatenates, thereby enabling continuous typing.

� The CursorPosition advances one place to Position 3.

� ICAOSearch returns two VORs whose Ident is 'CVO':

MatchedIcaosNumber: 2

ICAO 1 1
Index 1 2 3 4 5 6 7 8 9 0 1 2

0 V H E C V O
1 V K 1 C V O

VHE_ _ _ _CVO_ _ is the ICAO of the CAIRO VOR located in Cairo, Egypt, not

CORVALLIS VOR located in Corvallis, Oregon, USA. Both share the same Ident, “CVO”.
ICAOSearch located the two VORs with that Ident, but VHE_ _ _ _CVO_ _ comes

alphabetically before VK1_ _ _ _CVO_ _, the ICAO of the Corvallis VOR, so it has

Index value 0. If an ICAO transfer is made at this point, the Lat and Lon of the Cairo
VOR will be accessed.

ICAOs returned from ICAOSearch are Indexed, and a pointer, IcaoSearchMatchedIcao,
must be defined to access the ICAOs. The default index pointer is always 0, the first
item in the list. Setting IcaoSearchMatchedIcao to 1 will access the second VOR:

 38

1 (>C:fs9gps:IcaoSearchMatchedIcao)

3 IcaoSearchCursorPosition

CVO IcaoSearchCurrentIdent

VK1 CVO IcaoSearchCurrentIcao

V IcaoSearchCurrentIcaoType

K1 IcaoSearchCurrentIcaoRegion

2 IcaoSearchMatchedIcaosNumber

1 IcaoSearchMatchedIcao

STEP 2 - Transfer the ICAO to the WaypointVor Group. After setting the proper Index
pointer, ICAO Transfer into the WaypointVor Group can be performed. The appropriate
xml:

(C:fs9gps:IcaoSearchCurrentIcao) (>C:fs9gps:Waypoin tVorIcao)

VK1 CVO WaypointVorICAO

CVO WaypointVorIdent

CORVALLIS WaypointVorName

44.4996 WaypointVorLatitude

-123.2937 WaypointVorLongitude

3 IcaoSearchCursorPosition

CVO IcaoSearchCurrentIdent

VK1 CVO IcaoSearchCurrentIcao

V IcaoSearchCurrentIcaoType

K1 IcaoSearchCurrentIcaoRegion

2 IcaoSearchMatchedIcaosNumber

1 IcaoSearchMatchedIcao

Now, WaypointVorIcao = IcaoSearchCurrentIcao = VK1_ _ _ _CVO_ _, and variables

WaypointVorLatitude and WaypointVorLongitude return the desired Lat and Lon of the
CORVALLIS VOR.

RESOLVING MULTIPLE IDENT MATCHES

Because Idents are not unique, ICAO Searches sometimes return multiple ICAO matches
(IcaoSearchMatchedIcaosNumber > 1), as in the case of the ' CVO' VOR search.

 39

There are a few ways to select the index pointer of the desired facility. The gps_500
gauge typically displays ICAOSearch results (or the Idents from) on the screen and the
user selects the desired facility by manipulating a scroll bar and cursor.

Alternatively, code in the users gauge can determine the correct index pointer based on
selection criteria. In the VOR example, the nearest VOR may be desired. The following
code snippet demonstrates one way to select the nearest VOR. It involves an ICAO
Transfer into the Facility Group to retrieve the Lat and Lon of each VOR returned by the
ICAO search.

� Line 10. The Loop is executed if there are multiple ICAOs returned by

ICAOSearch and L:ResolveMultipleICAOs mouse Area has been clicked.

� Lines 12 through 22. Loop parameters are initialized.

 40

� Line 24. The Index Pointer is set.

� Line 25. The ICAO Transfer.

� Lines 27 and 28. The cycle skip code used after the ICAO Transfer. This is
a cycle counting technique.

� Lines 30 through 32. GeoCalcDistance is calculated using the aircraft
position as the Lat1, Lon1 reference point and the current Facility location as
Lat2, Lon2. The result is stored as an L:Var.

� Lines 33 through 37. The current Facility distance is checked to see if it is
the shortest and, if so, then its Index Pointer is stored as
L:NearestFacilityIndex , which is the objective.

� Lines 38 and 39. The cycle counter is reset to zero and the Index Pointer
is incremented to prepare for the next Facility in the ICAOSearch list.

� Lines 40 through 43. The loop terminates after the number of Facilities
checked equals MatchedIcaosNumber.

The Loop is triggered by a click area that sets both L:ResolveMultipleICAOs and

L:ResolveMultipleICAOInit to 1.

ICAO SEARCH AIRPORTS – A Special Case

If interested in Airports only, then ICAO Search is not necessary in order to find the
unique Airport ICAO. The reason is that the 3 to 4 character Airport Ident is unique
itself, and a full Airport ICAO involves simply concatenating the Airport Start Cursor, “A”,
with the Ident, as follows:

' A_ _ _ _ _ _' 'KLAX' scat

That is the full ICAO for KLAX Airport. The first part of the statement is an ‘A’ followed
by six spaces. The Airport Ident could be entered via Direct Keyboard Entry or Mouse or
Code (discussed in later chapters).

Defining the ICAO using Direct Keyboard Entry for the Ident might look something like
the following:

' A_ _ _ _ _ _'

(L:IdentChar1, enum) chr scat

(L:IdentChar2, enum) chr scat

(L:IdentChar3, enum) chr scat

(L:IdentChar4, enum) chr scat

Use of this shortcut to avoid an ICAO Search is a special case that is safe for Airports
only.

 41

ICAO Transfer

The ICAO Transfer is a simple technique used to move from one gps group into another
in order to access additional information (i.e., variables) regarding a specific Airport,
VOR, NDB, or Intersection / Waypoint - information that is contained in the second
group, but not in the first.

It is an important technique to understand as far as FS9 goes. It’s also important to
understand when working with the FSX gps module, although some of the need for the
ICAO Transfer has been alleviated because, with FSX, the Nearest Groups (the ‘first’
group) are populated with several more variables from the Waypoint Groups (the
‘second’ group) to begin with.

An example is the best way to explain the technique.

ICAO TRANSFER EXAMPLE – NearestAirport > WaypointAirport

A good example of ICAO Transfer in fs9gps is the access of additional airport
information following a NearestAirport search. Suppose the user wants a list of all
frequencies from the nearest airport. The solution begins with a NearestAirport search,
the results of which are shown below. In this example, all of the variables that are
available in the NearestAirport Group are displayed.

FS9 NearestAirport Group information available from a NearestAirport search is:

• 12 Character ICAO Identification

• Airport Ident

• Airport Kind (Class) Code (hard surface = 1, soft = 2, water = 3, etc)

• Longest Runway Direction

 42

• Distance to the Airport from the reference point (aircraft)

• True Bearing to the Airport from the reference point

• Best (most precise) Approach Code

• Best (most precise) Approach Name

• Com Frequency Name (but just one, the principal airport control, usually ‘twr’ or
‘CTF’ if there is either, but never Ground or other)

• Com Frequency Value (but just one, and if there are multiple Tower frequencies,
only the first)

• Longest Runway Length

However, in FS9, there is much more airport information, such as all airport frequencies,
located in the WaypointAirport Group. Unfortunately, all of the WaypointAirport Group
variables are not accessible simply by performing a NearestAirport search.

To display the list of all frequencies of the nearest airport, the user must ‘transfer’ into
the WaypointAirport Group where they are located. This is a simple process of sending
the ICAO of the nearest airport obtained from the NearestAirport search to
WaypointAirport. The xml instruction, which can be inserted in the <Update> section is:

0 (>C:fs9gps:NearestAirportCurrentLine) // Index pointer for the nearest

(C:fs9gps:NearestAirportCurrentICAO)
(>C:fs9gps:WaypointAirportICAO)

Now, WaypointAirport has a specific ICAO to work with, and all variables subsequently
accessed in the WaypointAirport Group, such as the list of frequencies, return
information about only that airport.

 43

A few comments:

� In this example, why doesn’t one go directly to WaypointAirport for the

frequency list to begin with? Because WaypointAirport does not have the ability
to determine which airport is the nearest. WaypointAirport must always be told
(e.g., by defining WaypointAirportICAO) which specific airport you are interested
in. This is one area in which FSX gps is easier to work with. Much airport
information is available in the NearestAirport Group to begin with, unlike in FS9.

� The ICAO must be used for the transfer into another group. It is the unique

database element identifier. Note that the NearestAirport to WaypointAirport
transfer will not work using Ident:

0 (>C:fs9gps:NearestAirportCurrentLine)

(C:fs9gps:NearestAirportCurrentIdent)
(>C:fs9gps:WaypointAirportIdent)

� The airport frequencies accessed in WaypointAirport are an indexed list

containing, in this example, 12 separate frequencies. To display or otherwise
utilize any one of them requires an Index pointer. In the WAYPOINT APT
FREQUENCIES DISPLAY LOOP section of the code below, line 88 is the Index
pointer for the frequency list, and lines 89 through 93 are the screen display
instructions. Refer to the Search> Index> Display section for more discussion.

The xml for Example 1:

 44

 45

 46

Waypoint Airport Group

The WaypointAirport Group contains all variables associated with specific airports in
fs9gps. The ICAO Identification must be specified before variables can be accessed,
then all subsequent variables accessed in WaypointAirport return information about that
airport until the ICAO is changed.

Frequencies, Transitions, Approaches and Runways are indexed variables (lists)
requiring an Index Pointer to access specific items. The rest are non-indexed.

� WaypointAirportICAO (12 character string) [Get, Set]

The 12 character ICAO Identification for the specific airport.

� WaypointAirportIdent (3 to 4 character string) [Get]

The airport IDENT code. Note that this is not the same as the 12 character ICAO.
Airport Idents are three to four characters long and often begin with the first letter of
the Region code.

� WaypointAirportKind (enum) [Get]

A number representing Airport Class (Kind).

Class (Kind) # Class (Kind)

0 UNKNOWN_KIND_AIRPORT 3 WATER_SURFACE_AIRPORT

1 HARD_SURFACE_AIRPORT 4 HELIPAD_AIRPORT

2 SOFT_SURFACE_AIRPORT 5 PRIVATE_AIRPORT

http://msdn.microsoft.com/en-us/library/cc526954.aspx#AirportClass

� WaypointAirportLongestRunwayDirection (degrees) [Get]

Direction (True) of the longest runway. Only one direction of the runway pair is
returned. About ~90% of the time, FS returns the direction of the eastward (0 to 180
degrees) facing runway. Why the 10% exceptions, I don’t know.

� WaypointAirportType (enum) [Get]

A number representing Airport Type.

 47

WaypointAirportType

Type # Type

0 UNKNOWN_TYPE_AIRPORT 2 MILITARY_TYPE_AIRPORT

1 PUBLIC_TYPE_AIRPORT 3 PRIVATE_TYPE_AIRPORT

http://msdn.microsoft.com/en-us/library/cc526954.aspx#AirportPrivateType

� WaypointAirportName (string) [Get]

Name of the airport. WaypointAirportName is the only ‘name’ in fs9gps that can be
searched using NameSearch.

� WaypointAirportCity (string) [Get]

Airport city, and in the case of many airports in the North America, state or province.

� WaypointAirportRegion (string) [Get]

Does not exist. Although WaypointAirportRegion is listed in the SDKs as an FS9 and FSX
gps variable, Region is absent in the WaypointAirportICAO, and therefore, AirportRegion
is not a live variable in the WaypointAirport Group.

� WaypointAirportLatitude
� WaypointAirportLongitude (degrees, radians) [Get]

The latitude and longitude of the airport. WaypointAirportLatitude and Longitude is the
center of the runway, or in the case of large airports, the center of the airport facility.
The units of Lat/Lon can be degrees (formatted +/-ddd.dddd where S16 degrees 30
minutes would be written as -16.5000) or radians (d.dddd).

19L19R

1R

1L

28L

28R

10R

10L
19L19R

1R

1L

28L

28R

10R

10L

WaypointAirportLatitude
WaypointAirportLongitude

Center of Airport

San Francisco Intl. Airport
California, USA

JeppesenFS9

10L

 48

� WaypointAirportElevation (feet) [Get]

Airport elevation, asl, at WaypointAirportLatitude, Longitude.

� WaypointAirportFuel1 (string) [Get]

If Avgas is available at the airport, WaypointAirportFuel1 = 'Avgas'. If Avgas is not
available, WaypointAirportFuel1 is blank.

� WaypointAirportFuel2 (string) [Get]

If Jet fuel is available at the airport, WaypointAirportFuel2 = 'Jet'. If Jet fuel is not
available, WaypointAirportFuel2 is blank.

� WaypointAirportBestApproachEnum (enum) [Get]

A number representing the most precise approach available at the airport. The higher
the number, the more precise the approach.

Approach Type # Approach Type # Approach Type

0 UNKNOWN 5 LORAN 10 LDA

1 VFR 6 RNAV 11 LOC

2 HEL 7 VOR 12 MLS

3 TACAN 8 GPS 13 ILS

4 NDB 9 SDF

http://msdn.microsoft.com/en-us/library/cc526954.aspx#AirportApproachType

� WaypointAirportBestApproach (string) [Get]

The name of the most precise approach available at the airport. Refer to table above.

� WaypointAirportRadarCoverage (enum) [Get]

As far as I can tell, AirportRadarCoverage is not functional in FS9 or FSX

� WaypointAirportAirspace (string) [Get]

As far as I can tell, AirportAirspace is not functional in FS9 or FSX

 49

� WaypointAirportTowered (bool) [Get]

Tower present = 1. No Tower = 0.

� WaypointAirportCurrentFrequency (enum) [Get, Set]

Index pointer for the airport frequency list. The first frequency in the list is accessed by
setting WaypointAirportCurrentFrequency=0.

� WaypointAirportFrequenciesNumber (enum) [Get]

Number of frequencies at the airport. Includes both Com and Nav (i.e., ILS & LOC)
frequencies.

� WaypointAirportFrequencyName (string) [Get]

Name of the frequency. Communication frequency names include:

• Approach

• ATIS, ASOS, AWOS

• CTAF

• Unicom

• Multicom

• Clearance

• Clearance Pre-Taxi

• Ground

• Tower

• Departure

• FSS

• Remote Clearance Delivery

Navigation frequency names are either ILS or LOC and include the runway number (e.g.
ILS-24L)

� WaypointAirportFrequencyLimit (enum) [Get]

‘Frequency limited’ designation.

0 = No Limit. Transmit and Receive capability. This is the most common
FrequencyLimit value in the fs9gps database.

1 = RX_ONLY. Receive Only. ATIS, ASOS, AWOS which transmit weather
and airport information.

2 = TX_ONLY. Transmit only.

3 = PART_TIME.

 50

� WaypointAirportFrequencyValue (MHz) [Get]

Radio frequency, usually expressed as MHz.

� WaypointAirportFrequencyType (enum) [Get]

Communication frequency = 1. Navigation frequency (ILS or LOC) = 2.

� WaypointAirportCurrentRunway (enum) [Get, Set]

Index pointer for the airport runway list. The first runway in the list is accessed by
setting WaypointAirportCurrentRunway=0.

� WaypointAirportRunwaysNumber (enum) [Get]

Number of runways at the airport. Every runway has two directions, but in the
Waypoint Airport Runways list, it counts as one runway.

� WaypointAirportRunwayLatitude
� WaypointAirportRunwayLongitude (degrees or radians) [Get]

Latitude and longitude of the center point of the runway. The example below shows
WaypointAirportRunwayLatitude and Longitude (41.98961 and -87.90514 degrees) for
runway 04L-22R at Chicago O’Hare International Airport.

 51

� WaypointAirportRunwayElevation (feet) [Get]

Elevation (asl) of the center point of the runway.

� WaypointAirportRunwayDirection (degrees) [Get]

Direction (True) of the runway, not the magnetic direction universally associated with
runway direction designations. Only the first direction (true) of the pair of directions for
each runway is returned. In the example pics below, WaypointAirportRunwayDirection
of Runway 01-19 is 345.2 degrees.

 52

� WaypointAirportRunwayDesignation (string) [Get]

The name of the runway pair. For example, “04L-22R”.

� WaypointAirportRunwayLength (feet) [Get]

Runway length, measured from runway ends as shown below. In the fs9gps module,
displaced thresholds are included in runway measured length.

� WaypointAirportRunwayWidth (feet) [Get]

Width of the runway. On runways where the sides are marked with white stripes,
RunwayWidth is measured outside to outside the stripes as depicted below.

 53

� WaypointAirportRunwaySurface (enum) [Get]

A number representing runway surface type.

Surface Type # Surface Type # Surface Type

0 UNKNOWN 105 GRAVEL 112 SAND

1 CONCRETE 106 OIL_TREATED 113 SHALE

2 ASPHALT 107 STEEL 114 TARMAC

101 GRASS 108 BITUMINUS 115 SNOW

102 TURF 109 BRICK 116 ICE

103 DIRT 110 MACADAM 201 WATER

104 CORAL 111 PLANKS

http://msdn.microsoft.com/en-us/library/cc526954.aspx#RunwaySurfaceType

� WaypointAirportRunwayLighting (enum) [Get]

A number representing airport lighting type. Note that this is not list of available lighting
systems for a runway, such as VASI and REIL.

Lighting Type # Lighting Type

0 UNKNOWN 3 FULL_TIME

1 NONE 4 FREQUENCY

2 PART_TIME

http://msdn.microsoft.com/en-us/library/cc526954.aspx#RunwayLightingType

RunwayLighting Types 2 and 4 may not exist, at least not in the fs9gps database. I
have checked all runways at all airports in the fs9gps database within Europe and the
USA and found no Type 2 or 4 RunwayLighting types.

� WaypointAirportCurrentApproach (enum) [Get, Set]

Index pointer for the airport approach procedure list. The first approach in the list is
accessed by setting WaypointAirportCurrentApproach=0.

� WaypointAirportApproachesNumber (enum) [Get]

The number of approach procedures for the selected airport.

� WaypointAirportApproachName (string) [Get]

The name of the selected approach, such as, “ILS 22R”, “NDB 27R”, or “RNAV 09L”.

 54

� WaypointAirportApproachGps (bool) [Get]

A designation indicating that the approach can be flown by the GPS receiver.
ApproachGps = 1 = approach is approved for GPS use. ApproachGps = 0 = approach is
not approved for GPS use. For these approaches, the GPS receiver can be used for
supplemental information only.

� WaypointAirportApproachTransitionsNumber (enum) [Get]

The number of transitions available for the selected approach.

� WaypointAirportApproachCurrentTransition (enum) [Get, Set]

Index pointer for the approach transitions list. The first transition in the list is accessed
by setting WaypointAirportCurrentTransition=0.

� WaypointAirportApproachTransitionNane (string) [Get]

The name of the current transition, such as, “Vectors”, or “PAPPI” (a waypoint approach
fix).

� WaypointAirportApproachTransitionLatitude
� WaypointAirportApproachTransitionLongitude (degrees or radians) [Get]

The latitude and longitude of the center of the runway to which the selected approach
applies.

� WaypointAirportApproachTransitionSize (nmiles) [Get]

Size (radius, I assume) of the selected approach transition. It appears that all
ApproachTransitionSize values in the fs9gps database are preset to 27.00 nmiles.

 55

FSX-ONLY VARIABLES – WaypointAirport Group (these add nothing to FS9)

As far as I can determine, the FSX-only WaypointAirport variables either do not function
properly or add nothing to the existing FS9 gps.dll functionality.

WaypointAirportApproach Variables (these do not function reliably)

The WaypointAirportApproach variables (FSX-only) appear to access and synthesize
some FlightPlanWaypointApproach waypoints from the WaypointAirport group. In my
opinion, these variables do not function reliably. Furthermore, I don’t understand why
they would be useful even if they worked correctly.

From what I can tell, the variables return a list of two to four approach waypoints where
the first, and sometimes the second, is associated with the final approach leg, or the
intermediate approach plus final approach legs. The last waypoint returned is associated
with a missed approach fix or procedure. I cannot discern the reason why two, three or
four waypoints are returned, and I cannot always correlate between the FS9
FlightPlanWaypointApproach variables, which appear to function correctly, and these
FSX-only variables.

Finally, I note that WaypointAirportSelectedApproach is critical to this set of variables,
yet it is not even listed in the SDK. It occured to me that such a variable might be
needed, but I had to inspect the FSX gps.dll module to find its name.

 WaypointAirportSelectedApproach (enum) [Get, Set]

The loaded approach. It is analogous to WaypointAirportCurrentApproach, but must be
used rather than WaypointAirportCurrentApproach for this set of FSX-only variables.

� WaypointAirportApproachSelectedTransition (enum) [Get, Set]

Does not seem to function at all.

 WaypointAirportApproachNumberLegs (enum) [Get]

The number of waypoints returned, analogous to FlightPlanApproachWaypointsNumber,
but obviously not the same value.

 WaypointAirportApproachCurrentLeg (enum) [Get, Set]

The index pointer, analogous to FlightPlanWaypointApproachIndex.

 56

 WaypointAirportApproachCurrentLegIcao (string) [Get]

The Ident of the waypoint, not the ICAO.

� WaypointAirportApproachCurrentLegType (string?) [Get]

Does not appear to function. Always returns a zero. Additionally, ‘Type’ would typically
be a number, not a string.

 WaypointAirportApproachCurrentLegBearing (degrees) [Get]

Magnetic course of the leg associated with the waypoint.

 WaypointAirportApproachCurrentLegDistance (nmiles) [Get]

Length of the leg associated with the waypoint. Often, this cannot be correlated with
and analogous leg from FlightPlanWaypointApproach group.

 WaypointAirportApproachCurrentLegIsMinutes (bool) [Get]

A flag associated with a timed missed approach hold procedure.

 57

WaypointAirportSelectedFrequency (redundant with existing FS9 variables)

The WaypointAirportSelectedFrequency variables function, but are redundant with
WaypointAirportFrequency variables discussed before. That is, they return the same list
of airport frequencies.

I also note that these two variables are not listed in the SDK, but can be found when the
FSX gps.dll module is inspected for variable names.

 WaypointAirportSelectedFrequencyIndex (enum) [Get, Set]

Index pointer for the airport frequency list, same as WaypointAirportCurrentFrequency.

 WaypointAirportSelectedFrequencyValue (MHz) [Get]

Radio frequency value. Same as WaypointAirportFrequencyValue.

 58

Waypoint Intersection Group

The WaypointIntersection Group contains all variables associated with Waypoints and
Intersections in the fs9gps database. The ICAO Identification must first be specified,
then all variables accessed in WaypointIntersection return information about that
Intersection or Waypoint until the ICAO is changed.

All variables in WaypointIntersection are non-indexed; there are no ‘lists’ of items
associated with a specific Intersection (compared to WaypointAirport, where, for
example, there are lists of different runways, approaches, transitions, and frequencies).

The screen shot below shows the Facility Information page of an example Intersection
in FS9, indicating the associated gps variable names.

0 UNKNOWN 4 NDB INTERSECTION

1 INTERSECTION (NAMED) 5 OFFROUTE INTERSECTION

2 UNNAMED INTERSECTION 6 IAF INTERSECTION

3 VOR INTERSECTION 7 FAF INTERSECTION

WaypointIntersectionIdent

WaypointIntersectionType

The following is a snapshot of WaypointIntersection variables for the same Intersection.

WK3KHUTTURKY WaypointIntersectionICAO

TURKY WaypointIntersectionIdent

WaypointIntersectionCity

K3 WaypointIntersectionRegion

 38.1081 WaypointIntersectionLatitude

 -97.8066 WaypointIntersectionLongitude

1 WaypointIntersectionType

GNP WaypointIntersectionNearestVorIdent

2 WaypointIntersectionNearestVorType

327 WaypointIntersectionNearestVorTrueRadial

321 WaypointIntersectionNearestVorMagneticRadial

158 WaypointIntersectionNearestVorDistance

 59

� WaypointIntersectionICAO (string, SLEN=12) [Get, Set]

WaypointIntersectionICAO is the ICAO for the specific Intersection.

� WaypointIntersectionIdent (string) [Get]

The 4 to 5 character Intersection Ident.

� WaypointIntersectionType (enum) [Get]

An enum representing Intersection Type.

Intersection Type # Intersection Type

0 UNKNOWN 4 NDB

1 NAMED 5 OFFROUTE

2 UNNAMED 6 IAF

3 VOR 7 FAF

http://msdn.microsoft.com/en-us/library/cc526954.aspx#NearestIntersectionData

The great majority of Intersections in the fs9gps database are Type 1 = Named,
followed by Type 2, 3 and 4, which is relatively unusual. It does not appear that there
are any Type 0, 5, 6, or 7 Intersections in the database.

� WaypointIntersectionCity (string) [Get]

Returns a blank string. WaypointIntersectionCity is apparently not populated, or at
least, not functional in the fs9gps data base.

� WaypointIntersectionRegion (string) [Get]

The two character Region code.

� WaypointIntersectionLatitude
� WaypointIntersectionLongitude (degrees or radians) [Get]

The latitude and longitude of the Intersection. The units of Lat/Lon can be degrees
(formatted +/-ddd.dddd where S16 degrees 30 minutes would be written as -16.5000)
or radians (d.dddd).

 60

� WaypointIntersectionNearestVorIdent (string) [Get]

The Ident of the VOR nearest the intersection.

� WaypointIntersectionNearestVorType (enum) [Get]

An enum representing the VOR Type of the nearest VOR to the intersection.

VOR Type # VOR Type

0 UNKNOWN 4 TACAN

1 VOR 5 VORTAC

2 VOR_DME 6 ILS

3 DME 7 VOT

http://msdn.microsoft.com/en-us/library/cc526954.aspx#VorType

WaypointIntersectionNearestVor …

� MagneticRadial (degrees) [Get]

Direction (magnetic) from the nearest
VOR to the intersection. This is the VOR
radial that the intersection is on as
shown in the figure on the right.

� TrueRadial (degrees) [Get]

Bearing (true) from the nearest VOR to
the intersection. Degrees in the
example shown.

� Distance (NMiles) [Get]

Distance from the nearest VOR to the
intersection. 6.2 nmiles in the example
shown.

 61

Waypoint NDB Group

The WaypointNdb Group contains all variables associated with specific Non-Directional
Beacons in the fs9gps database. The ICAO Identification must be specified before
variables can be accessed, then all subsequent variables accessed in WaypointNdb
return information about that NDB until the ICAO is changed.

All variables in WaypointNdb are non-indexed; there are no ‘lists’ of items associated
with a specific NDB (compared to WaypointAirport, where, for example, there are lists of
different runways, approaches, transitions, and frequencies).

The figure below is a screen shot of the Facility Information page of an example NDB in
FS9, indicating the associated gps variable names.

WaypointNdbName

WaypointNdbFrequency

WaypointNdbType = 2

WaypointNdbIdent

0 - Unknown

1 - Compass locator below 25 watts 15 -
25 NM. Most common in US. Outer
Marker, for example

2 - MH below 50 watts 25 - 50 NM. DB
Approach Facility found at or near airports
where it is the primary approach aid

Type / Class of NBD, Transmission Power, real life Effective Range
(which may or may not match how it is modeled in FS9)

3 - H 50 to 1,999 watts 50 - 75 NM.
Enroute Airway Beacon, common in
Canada and Caribbean

4 - HH 2,000+ watts 75 - 125 NM. High
powered Beacon found along coasts

 62

The following is a snapshot of all WaypointNdb variables for the LVV NDB.

NK5 LVV WaypointNdbICAO

LVV WaypointNdbIdent

2 WaypointNdbType

LAKE LAWN (DELEVAN) WaypointNdbName

WaypointNdbCity

K5 WaypointNdbRegion

 42.6988 WaypointNdbLatitude

 -88.5932 WaypointNdbLongitude

948 WaypointNdbElevation

404 WaypointNdbFrequency

0 WaypointNdbWeatherBroadcast

2 WaypointNdbMagneticVariation

� WaypointNdbICAO (string, SLEN=12) [Get, Set]

The ICAO identifier for the specific NDB. Some NDBs are nav fixes in fs9gps approach
procedures. These NDBs include the “owning” airport Ident in ICAO character positions
4 through 7. See discussion in ICAO Idents.

� WaypointNdbIdent (string) [Get]

The 1 to 5 character NDB Ident

� WaypointNdbType (enum) [Get]

A number representing NDB Type (Class).

The following lists NDB Type and Class, and real life Transmission Power and Effective
Range (which may not match how it is modeled in Flight Simulator. I’m not sure):

0 - Unknown. There appear to be no Type 0 NDBs in the fs9gps database.

1 - Compass Locator. Below 25 watts, 15 - 25 nmiles. Type 1 NDBs are absent
within the U.S.A. in the fs9gps database, but are common in other parts of the
world, especially Europe (eg, U.K.).

2 - MH. Below 50 watts, 25 - 50 nmiles. Directional Beacon Approach Facility found
at or near airports where it is the primary approach aid. This is the most common
type of NDB in the fs9gps database.

3 - H. 50 to 1,999 watts, 50 - 75 nmiles. Enroute Airway Beacon, common in
Canada and Caribbean

4 - HH. 2,000+ watts, 75 - 125 nmiles. High powered Beacon found along coasts
in the U.S.A.

 63

� WaypointNdbName (string) [Get]

Name of the NDB. Interestingly, some NDBs also contain the city name in parenthesis
following the NDB name – all part of the variable WaypointNdbName. I do not
understand the rules/reasons that some do and some do not. In the example above,
Lake Lawn is the NDB name, Delavan is the city. NDB Names are not searchable using
NameSearch.

� WaypointNdbCity (string) [Get]

Returns a blank string. WaypointNdbCity is apparently not populated, or at least, not
functional in the fs9gps data base.

� WaypointNdbRegion (string) [Get]

The two character Region code.

� WaypointNdbLatitude
� WaypointNdbLongitude (degrees or radians) [Get]

The latitude and longitude of the NDB. The units of Lat/Lon can be degrees (formatted
+/-ddd.dddd where S16 degrees 30 minutes would be written as -16.5000) or radians
(d.dddd).

� WaypointNdbElevation (feet) [Get]

Elevation (asl) of the NDB facility.

� WaypointNdbFrequency (kHz) [Get]

Radio frequency of the NDB. Commonly expressed in kHz.

� WaypointNdbWeatherBroadcast (gps boolean) [Get]

The ESP SDK indicates that WaypointNdbWeatherBroadcast is a gps boolean:

0 = Unknown

1 = No

2 = Yes

However, having scanned most NDBs in the fs9gps database, so far I have found all
NDBs have WaypointNdbWeatherBroadcast = 0. Consequently, this variable may not
represent an active feature in FS9.

 64

� WaypointNdbMagneticVariation (degrees) [Get]

WaypointNdbMagneticVariation is the
compass direction of true north. An
integer is always returned.

In this example, A:GPS MAGVAR and
A:MGVAR would equal 19° (19E).

To derive the magnetic course from a
gps var that returns true bearing (which
is mostly the case) subtract A:MAGVAR
from the true bearing.

 65

FSX-ONLY VARIABLES – WaypointNDB Group

Similar to the other variables in this Group, these FSX-only variables require an ICAO
Transfer of an NDB ICAO into WaypointNdbICAO before they return values.

These variables belong to the WaypointNdb Group and are not related to, nor function
with, NearestNdb Search.

 WaypointNdbNearestAirportId (string) [Get]

The three to four character Ident of the airport closest to the NDB identified by the
ICAO of the NDB.

 WaypointNdbNearestAirportLongestRunwayDirection (degrees) [Get]

Direction (True) of the longest runway at the airport closest to the NDB.

 WaypointNdbNearestAirportKind (enum) [Get]

A number representing Airport Class (Kind).

Class (Kind) # Class (Kind)

0 UNKNOWN_KIND_AIRPORT 3 WATER_SURFACE_AIRPORT

1 HARD_SURFACE_AIRPORT 4 HELIPAD_AIRPORT

2 SOFT_SURFACE_AIRPORT 5 PRIVATE_AIRPORT

http://msdn.microsoft.com/en-us/library/cc526954.aspx#AirportClass

 WaypointNdbNearestAirportBearing (degrees) [Get]

The bearing (True) to the nearest airport. Presumed this is referenced to the center of
the airport facility, WaypointAirportLatitude and Longitude.

 WaypointNdbNearestAirportDistance (nmiles) [Get]

Distance to the nearest airport. Presumed this is referenced to the center of the airport
facility, WaypointAirportLatitude and Longitude.

 66

Waypoint VOR Group

The WaypointVor Group contains all variables associated with specific VOR, VORTAC and
VOR-DME beacons in the fs9gps database. The ICAO Identification must be specified
before variables can be accessed, then all subsequent variables accessed in
WaypointVor return information about that VOR until the ICAO is changed. ILS and LOC
are not part of the WaypointVor Group even though the ICAO Type for ILS and LOC is
‘V’. These two Nav facilities belong to the WaypointAirport Group.

All variables in WaypointVor are non-indexed; there are no ‘lists’ of items associated
with a specific VOR (compared to WaypointAirport, where, for example, there are lists of
different runways, approaches, transitions, and frequencies).

The figure below is a screen shot of the Facility Information page of an example VOR in
FS9, indicating the associated gps variable names.

WaypointVorName

WaypointVorFrequency

WaypointVorIdent

WaypointVorClass = 3
(also known as VOR Kind)

0 = UNKNOWN
1 = TERMINAL
2 = LOW_ALT
3 = HIGH_ALT
4 = ILS
5 = VOT

WaypointVorClass = 3
(also known as VOR Kind)

0 = UNKNOWN
1 = TERMINAL
2 = LOW_ALT
3 = HIGH_ALT
4 = ILS
5 = VOT

WaypointVorType = 2

0 = UNKNOWN
1 = VOR
2 = VOR_DME
3 = DME

4 = TACAN
5 = VORTAC
6 = ILS
7 = VOT

WaypointVorType = 2

0 = UNKNOWN
1 = VOR
2 = VOR_DME
3 = DME

4 = TACAN
5 = VORTAC
6 = ILS
7 = VOT

 67

The following is a snapshot of all WaypointVor variables for the NRE VOR.

VRJ NRE WaypointVorICAO

NRE WaypointVorIdent

2 WaypointVorType

3 WaypointVorClass

NARITA (TOKYO) WaypointVorName

WaypointVorCity

RJ WaypointVorRegion

 35.7823 WaypointVorLatitude

 140.3625 WaypointVorLongitude

154 WaypointVorElevation

117.9 WaypointVorFrequency

0 WaypointVorWeatherBroadcast

7 WaypointVorMagneticVariation

Note that for the Narita VOR, the City is part of the WaypointVorName and is displayed
in parenthesis (Tokyo).

� WaypointVorICAO (string, SLEN=12) [Get, Set]

WaypointVorICAO is the ICAO for the specific VOR.

� WaypointVorIdent (string) [Get]

The 2 to 3 character VOR Ident.

� WaypointVorType (enum) [Get]

A number representing VOR Type.

VOR Type # VOR Type

0 UNKNOWN 4 TACAN

1 VOR 5 VORTAC

2 VOR_DME 6 ILS

3 DME 7 VOT

http://msdn.microsoft.com/en-us/library/cc526954.aspx#VorType

 68

� WaypointVorClass (enum) [Get]

A number representing VOR Class, also known as VOR Kind.

VOR Class # VOR Class

0 UNKNOWN 3 HIGH_ALT

1 TERMINAL 4 ILS

2 LOW_ALT 5 VOT

http://msdn.microsoft.com/en-us/library/cc526954.aspx#VorKind

� WaypointVorName (string) [Get]

Name of the VOR. Interestingly, some VORs also contain the city name in parenthesis
following the VOR name – all part of the variable WaypointVorName. I do not
understand the rules/reasons that some do and some do not. In the example above,
Narita is the VOR name, Tokyo is the city. VOR Names are not searchable using
NameSearch.

� WaypointVorCity (string) [Get]

Returns a blank string. WaypointVorCity is apparently not populated, or at least, not
functional in the fs9gps data base.

� WaypointVorRegion (string) [Get]

The two character Region code.

� WaypointVorLatitude
� WaypointVorLongitude (degrees or radians) [Get]

The latitude and longitude of the VOR. The units of Lat/Lon can be degrees (formatted
+/-ddd.dddd where S16 degrees 30 minutes would be written as -16.5000) or radians
(d.dddd).

� WaypointVorElevation (feet) [Get]

Elevation (asl) of the VOR facility.

 69

� WaypointVorFrequency (MHz) [Get]

Radio frequency of the VOR. Commonly expressed in MHz.

� WaypointVorWeatherBroadcast (gps boolean) [Get]

The ESP SDK indicates that WaypointVorWeatherBroadcast is a gps boolean:

0 = Unknown

1 = No

2 = Yes

However, having scanned most VORs in the fs9gps database, so far I have found all
VORs have WaypointVorWeatherBroadcast = 0. Consequently, this variable may not
represent an active feature in fs9gps.

� WaypointVorMagneticVariation (degrees) [Get]

WaypointVorMagneticVariation is the compass
direction of true north.

In the example shown (SEA VORTAC, Seattle
Washington, USA. Magnetic Variation = 19E),
to derive magnetic variation (similar to
A:MAGVAR and A:GPS MAGVAR), subtract
WaypointVorMagneticVariation from 360°.

In FSX, A:MAGVAR is actually 17.3°, curiously
reflecting a different mag variation in the gps
module vs. the A:MAGVAR system variable.
Don’t know why.

 70

FSX-ONLY VARIABLES – WaypointVor Group

Similar to the other variables in this Group, these FSX-only variables require an ICAO
Transfer of a VOR ICAO into WaypointVorICAO before they return values.

These variables belong to the WaypointVor Group and are not related to, nor function
with, NearestVor Search.

 WaypointVorNearestAirportId (string) [Get]

The three to four character Ident of the airport closest to the VOR referenced by the
ICAO.

 WaypointVorNearestAirportLongestRunwayDirection (degrees) [Get]

Direction (True) of the longest runway. Only one direction of the runway pair is
returned. About ~90% of the time, FS returns the direction of the eastward (0 to 180
degrees) facing runway. Why the 10% exceptions, I don’t know.

 WaypointVorNearestAirportKind (enum) [Get]

A number representing Airport Class (Kind).

Class (Kind) # Class (Kind)

0 UNKNOWN_KIND_AIRPORT 3 WATER_SURFACE_AIRPORT

1 HARD_SURFACE_AIRPORT 4 HELIPAD_AIRPORT

2 SOFT_SURFACE_AIRPORT 5 PRIVATE_AIRPORT

http://msdn.microsoft.com/en-us/library/cc526954.aspx#AirportClass

 WaypointVorNearestAirportBearing (degrees) [Get]

The bearing (True) to the nearest airport. Presumed this is referenced to the center of
the airport facility, WaypointAirportLatitude and Longitude.

 WaypointVorNearestAirportDistance (nmiles) [Get]

Distance to the nearest airport. Presumed this is referenced to the center of the airport
facility, WaypointAirportLatitude and Longitude.

 71

Nearest Airport Group

A NearestAirport search returns a list of airports nearest the reference point that is
normally set using the current position of the aircraft. It sorts the data by ascending
distance. In very large searches, ascending distance isn’t strictly maintained, but in
smaller searches up to 10 items or so, ascending order seems always to be maintained.

Common with all Nearest searches, not all available airport information can be obtained
in a NearestAirport search, only the variables that begin with NearestAirport. If airport
frequencies, runways, transitions, etc, are needed, then an ICAO transfer into
WaypointAirport must be performed. Refer to the ICAO Transfer section.

� NearestAirportCurrentLatitude
� NearestAirportCurrentLongitude (degrees, radians) [Get, Set]

Latitude and Longitude of the reference point, usually the aircraft. Input is in degrees
(decimal format, not deg, min, sec) or radians.

� NearestAirportMaximumItems (enum) [Get, Set]

The limit of numbers of items to be returned in the search.

� NearestAirportMaximumDistance (nmiles) [Get, Set]

Maximum search radius. Especially in large searches, MaximumDistance is not strictly
adhered to. For some reason apparently having to do with the way the search algorithm
works, some searches return items 20 to 25% more distant than MaximumDistance.

� NearestAirportItemsNumber (enum) [Get]

The number of airports actually returned in the NearestAirport search.

� NearestAirportCurrentLine (enum) [Get, Set]

The Index pointer. Refer to the GPS Database Search section for further description.

� NearestAirportCurrentICAO (string) [Get]

The ICAO of each airport retrieved in the NearestAirport search.

 72

� NearestAirportCurrentIdent (string) [Get]

The 3 to 4 character Ident of each airport retrieved in the NearestAirport search.

� NearestAirportCurrentAirportKind (enum) [Get]

A number representing Airport Class.

Class (Kind) # Class (Kind)

0 UNKNOWN_KIND_AIRPORT 3 WATER_SURFACE_AIRPORT

1 HARD_SURFACE_AIRPORT 4 HELIPAD_AIRPORT

2 SOFT_SURFACE_AIRPORT 5 PRIVATE_AIRPORT

http://msdn.microsoft.com/en-us/library/cc526954.aspx#AirportClass

� NearestAirportCurrentLongestAirportDirection (degrees) [Get]

Direction (True) of the longest runway. Only one direction of the runway pair is
returned. About ~90% of the time, FS returns the direction of the eastward (0 to 180
degrees) facing runway. Why the 10% exceptions, I don’t know.

� NearestAirportCurrentDistance (nmiles) [Get]

The distance of each airport in the NearestAirport search from the reference point.

� NearestAirportCurrentTrueBearing (degrees) [Get]

The bearing (True) from the reference point to each VOR retrieved in the NearestVor
search.

� NearestAirportCurrentBestApproachEnum (enum) [Get]

A number representing the most precise approach available at the airport.

Approach Type # Approach Type # Approach Type

0 UNKNOWN 5 LORAN 10 LDA

1 VFR 6 RNAV 11 LOC

2 HEL 7 VOR 12 MLS

3 TACAN 8 GPS 13 ILS

4 NDB 9 SDF

http://msdn.microsoft.com/en-us/library/cc526954.aspx#AirportApproachType

 73

� NearestAirportCurrentBestApproach (string) [Get]

The name of the most precise approach available at the airport. Refer to table above.

� NearestAirportCurrentComFrequencyName (string) [Get]

NearestAirportCurrentComFrequencyName is the abbreviation for the airport traffic
control name if one is present at the airport. These include:

• twr = Tower

• CTF = Common Traffic Advisory Frequency (CTAF)

• uni = Unicomm

• mul = Multicomm

Ground, Clearance, Clearance Pre-Taxi, Approach, Departure, ATIS, ASOS, AWOS, and
FSS are not named by CurrentComFrequencyName. Those frequencies are available
only from the WaypointAirport Group.

� NearestAirportCurrentComFrequencyValue (MHz) [Get]

The frequency value of CurrentComFrequencyName. If more than one tower is available
at an airport, only the first frequency will be returned by CurrentComFrequencyValue. If
no traffic control frequencies are available for the airport, CurrentComFrequencyValue
returns 0.00.

 74

� NearestAirportCurrentLongestRunwayLength (feet) [Get]

Length of the longest runway at the airport.

FSX-ONLY VARIABLES – NearestAirport Group

These FSX-only variables add to the list of airport variabes that are retrievable through a
NearestAirport search.

NearestAirport Airport Variables

 NearestAirportSelected (enum) [Get, Set]

Index for the FSX NearestAirportSelectedAirport variables.
Analogous to NearestAirportCurrentLine

 NearestAirportSelectedAirportLatitude
 NearestAirportSelectedAirportLongitude (degrees, radians) [Get]

Coordinates of the nearest selected airport. Same values as WaypointAirportLatitude
and Longitude.

 NearestAirportSelectedLatitude
 NearestAirportSelectedLongitude (degrees, radians) [Get]

Redundant. Identical to NearestAirportSelectedAirportLatitude and Longitude.

 NearestAirportSelectedAirportName (string) [Get]

Name of the nearest selected airport. Same as WaypointAirportName.

 NearestAirportSelectedAirportCity (string) [Get]

City name of the nearest selected airport. Same as WaypointAirportCity.

 NearestAirportSelectedAirportElevation (feet) [Get]

Airport elevation (asl) of the nearest selected airport.
Same as WaypointAirportElevation.

 75

NearestAirport Frequency Variables

These variables list certain frequency information for a selected nearest airport. A
specific nearest airport must be first selected by using its index, for example:

4 (>@c:NearestAirportSelected)

Following that, an indexed list of frequencies associated with that nearest airport can be
retrieved. In this case, the 5th airport in the nearest airport list.

 NearestAirportCurrentFrequency (enum) [Get, Set]

Index for NearestAirportCurrentFrequencyName.

 NearestAirportSelectedFrequencyIndex (enum) [Get, Set]

Index for NearestAirportSelectedFrequencyValue.

Note the two different index pointers that must be used to obtain frequency data in the
nearest airport search. Both are analogous to WaypointAirportCurrentFrequency.

 NearestAirportSelectedNumberFrequencies (enum) [Get]

Number of frequencies at the selected nearest airport.
Same as WaypointAirportFrequenciesNumber.

 NearestAirportCurrentFrequencyName (string) [Get]

Names of the airport frequencies. Communication frequency names include:

• Approach
• ATIS, ASOS, AWOS
• CTAF
• Unicom
• Multicom
• Clearance

• Clearance Pre-Taxi
• Ground
• Tower
• Departure
• FSS
• Remote Clearance Delivery

Navigation frequency names are either ILS or LOC and include the runway number (e.g.
ILS-24L).

Same as WaypointAirportFrequencyName.

This variable is not the same as NearestAirportCurrentComFrequencyName which is the
name of the airport traffic control only, if one is present at the selected airport.

 76

 NearestAirportSelectedFrequencyValue (MHz) [Get]

Radio frequency value, usually expressed an MHz.
Same as WaypointAirportFrequencyValue.

NearestAirport Runway Variables

These variables list certain runway information for a selected nearest airport. A specific
nearest airport must be first selected by using its index, for example:

4 (>@c:NearestAirportSelected)

Following that, an indexed list of runways associated with that nearest airport can be
retrieved. In this case, the 5th airport in the nearest airport list.

 NearestAirportSelectedRunway (enum) [Get, Set]

Index pointer. Analogous to WaypointAirportCurrentRunway.

 NearestAirportSelectedAirportRunwaysNumber (enum) [Get]

Number of runways at the selected nearest airport.
Same as WaypointAirportRunwaysNumber.

 NearestAirportSelectedRunwayDesignation (string) [Get]

The designation, or name, of the selected runway. For example, “04L-22-R”. Same as
WaypointAirportRunwayDesignation.

 NearestAirportSelectedRunwayLength (feet) [Get]

Length of the selected runway. Same as WaypointAirportRunwayLength.

 NearestAirportSelectedRunwayWidth (feet) [Get]

Width of the selected runway. Same as WaypointAirportRunwayWidth.

 NearestAirportSelectedRunwaySurface (R.S.T. enum) [Get]

A number representing runway surface type.
Same as WaypointAirportRunwaySurface.

 77

Surface Type # Surface Type # Surface Type

0 UNKNOWN 105 GRAVEL 112 SAND

1 CONCRETE 106 OIL_TREATED 113 SHALE

2 ASPHALT 107 STEEL 114 TARMAC

101 GRASS 108 BITUMINUS 115 SNOW

102 TURF 109 BRICK 116 ICE

103 DIRT 110 MACADAM 201 WATER

104 CORAL 111 PLANKS

http://msdn.microsoft.com/en-us/library/cc526954.aspx#RunwaySurfaceType

NearestAirport Approach Variables

These variables list the approach names for the selected nearest airport. A specific
nearest airport must be first selected by using its index, for example:

4 (>@c:NearestAirportSelected)

Following that, an indexed list of approaches associated with that nearest airport can be
retrieved. In this case, the 5th airport in the nearest airport list. All approaches for all
runways are listed.

 NearestAirportCurrentApproach (enum) [Get, Set]

Index pointer. Analogous to WaypointAirportCurrentApproach.

 NearestAirportSelectedApproachIndex (enum) [Get, Set]

This appears to be an index pointer, and its value can be Set. What it’s an index pointer
to, I don’t know.

 NearestAirportSelectedNumberApproaches (enum) [Get]

The number of approach procedures for the selected nearest airport. Same as
WaypointAirportApproachesNumber.

 NearestAirportCurrentApproachName (string) [Get]

The name of the selected approach, such as “ILS 22R”, “NDB 27R”, “RNAV 09L”. Same
as WaypointAirportApproachName.

 78

Nearest Intersection Group

A NearestIntersection search returns a list of Intersections nearest the reference point
that is normally set from the current aircraft position. It sorts the data by ascending
distance. In very large searches, ascending distance isn’t strictly maintained, but in
smaller searches up to 10 items or so, ascending order seems always to be maintained.

Common with all Nearest searches, not all available Intersection information can be
obtained in a NearestIntersection search, only the variables that begin with
NearestIntersection. If Region, Nearest VOR Ident, Nearest VOR Type, Nearest VOR
True Radial, Nearest VOR Magnetic Radial, or Nearest VOR Distance from an intersection
following a NearestIntersection search is needed, then an ICAO transfer into
WaypointIntersection must be performed. Refer to the ICAO Transfer section.

� NearestIntersectionCurrentLatitude
� NearestIntersectionCurrentLongitude (degrees, radians) [Get, Set]

Latitude and Longitude of the reference point, usually the aircraft. Input is in degrees
(decimal format, not deg, min, sec) or radians.

� NearestIntersectionMaximumItems (enum) [Get, Set]

The limit of numbers of items to be returned in the search. In practice, this should be
kept realistically small so the NeasrestIntersection search returns data quickly. The
gps_500 gauge, for example, sets this value to 9.

� NearestIntersectionMaximumDistance (enum) [Get, Set]

Maximum search radius. Especially in large searches, MaximumDistance is not strictly
adhered to. For some reason apparently having to do with the way the search algorithm
works, some searches return items 20 to 25% more distant than MaximumDistance.

� NearestIntersectionCurrentFilter (enum) [Get, Set]

NearestIntersectionCurrentFilter is a number between 0 and 255 that is the decimal
equivalent of the 8 bit binary number that indicates which of the 8 Intersection types
are to be included in the NearestIntersection search.

The Intersection types for FSX, and presumably also for FS9 are:

 79

Bit Intersection Type Bit Intersection Type

0 UNKNOWN 4 NDB

1 NAMED 5 OFFROUTE

2 UNNAMED 6 IAF

3 VOR 7 FAF

http://msdn.microsoft.com/en-us/library/cc526954.aspx#NearestIntersectionData

The default fs9gps NearestIntersectionCurrentFilter value is 230. The binary equivalent
of decimal 230 is 1 1 1 0 0 1 1 0.

INTERSECTION TYPES

128 64 32 16 8 4 2 1 - Decimal value

F
A
F

IA
F

O
F
F
R
O

U
T
E

N
D

B

V
O

R

U
N

N
A
M

E
D

N
A
M

E
D

U
N

K
N

O
W

N

- INTERSECTION TYPE

7 6 5 4 3 2 1 0 - Bit number (0 thru 7)

1 1 1 0 0 1 1 0 - Bit selections

which includes Intersection types 1, 2, 5, 6, and 7. These are NAMED, UNNAMED,
OFFROUTE, IAF, and FAF intersections. That is, all Intersection types except VOR
and NDB.

� NearestIntersectionAddIntersectionType (enum) [Set]

NearestIntersectionAddIntersectionType is an enum (not a binary) that adds an
Intersection type to the NearestIntersection search.

� NearestIntersectionRemoveIntersectionType (enum) [Set]

NearestIntersectionRemoveIntersectionType is an enum (not a binary) that removes an
Intersection type from the NearestIntersection search.

 80

� NearestIntersectionSetDefaultFilter (enum) [Set]

NearestIntersectionSetDefaultFilter returns the NearestIntersection search to the default
value CurrentFilter = 230. The proper syntax is:

(>C:fs9gps:NearestIntersectionSetDefaultFilter)

Note that an argument is not required, however you can include anything you want as
log as the ‘>’ is included.

EXAMPLE: NearestIntersection Add, Remove, and SetDefault

To start, this is an example search result using the default filter setting (that is, no filter
or intersection type is set):

A few points of interest in the 12 character ICAO identifier include:

• The first character of the 12 character ICAO identifier, ICAO Type, is “W” for
Intersection types 1 and 2 = NAMED and UNNAMED (Waypoint) Intersections,
“V” for Intersection type 3 = VOR Intersection, and “N” for Intersection type 4 =
NDB Intersection.

• For Type 1 NAMED Intersections, the Intersection Idents are 5 letters long
(character positions 8 through 12) and are often geographically recognizable
words.

• Some Intersection ICAOs contain an Airport Ident listed in character positions 4
through 7. These are Terminal Waypoints and are displayed with blue
intersection symbols ��� on the FS9 map. Terminal Waypoints are part of fs9gps

 81

terminal procedures or part of approaches or departures towards and away from
a runway. The ident of the airport that “owns” Terminal Waypoint is included in
the ICAO. The ICAOs without an Airport Ident are enroute intersections used for
cross-country navigation purposes and often part of Victor Airway and Jet Airway
routes. These are the magenta colored intersections ��� on the FS9 map.

The fs9gps database appears to be populated with only 4 types of Intersections: Type 1
= NAMED, Type 2 = UNNAMED, Type 3 = VOR, and Type 4 = NDB. If correct, then
including types 5, 6, and 7 is irrelevant.

EXAMPLE 1: NearestIntersectionAddIntersectionType

To add Intersection Type 3 (Bit 3 = VOR Intersection) to the search, the following xml is
used:

3 (>C:fs9gps:NearestIntersectionAddIntersectionType)

which yields these search results:

The VOR Intersection ‘CNU’ (Line 4) is in the search results and the filter value is 238.

 82

EXAMPLE 2: NearestIntersectionRemoveIntersectionType

To also remove Intersection Type 1 (Bit 1 = Named Intersection) from the search, the
xml would be:

3 (>C:fs9gps:NearestIntersectionAddIntersectionType)

1 (>C:fs9gps:NearestIntersectionRemoveIntersectionT ype)

which yields these search results:

Intersection Type 1 has been removed and the filter value is 236.

 83

EXAMPLE: NearestIntersectionSetDefaultFilter

If you wish to now reset the filter to the default setting, the xml would be:

3 (>C:fs9gps:NearestIntersectionAddIntersectionType)

1 (>C:fs9gps:NearestIntersectionRemoveIntersectionT ype)

(>C:fs9gps:NearestIntersectionSetDefaultFilter)

and the search results return to the default filter value 230 setting:

 84

� NearestIntersectionItemsNumber (enum) [Get]

The number of Intersections actually returned in the NearestIntersection search.

� NearestIntersectionCurrentLine (enum) [Get, Set]

The Index pointer. Refer to the GPS Database Search section for further description.

� NearestIntersectionCurrentICAO (string) [Get]

The ICAO of each Intersection retrieved in the NearestIntersection search.

� NearestIntersectionCurrentIdent (string) [Get]

The 1 to 5 character Ident of each Intersection retrieved in the NearestIntersection
search.

� NearestIntersectionCurrentType (enum) [Get]

The type of each Intersection retrieved in the NearestIntersection search. See
NearestIntersectionCurrentFilter for additional discussion.

� NearestIntersectionCurrentDistance (nmiles or meters) [Get]

The distance of each Intersection retrieved in the NearestIntersection search from the
reference point (NearestIntersectionCurrent Latitude and CurrentLongitude), which is
normally set from the aircraft’s current position.

� NearestIntersectionCurrentTrueBearing (degrees or radians) [Get]

The bearing (true) from the reference point to each Intersection retrieved in the
NearestIntersection search.

 85

FSX-ONLY VARIABLES – NearestIntersection Group

 NearestIntersectionSelectedIntersection (enum) [Get, Set]

The Index Pointer. Analogous to NearestIntersectionCurrentLine. The variable that
counts the number of nearest intersections is NearestIntersectionItemsNumber (above)

 NearestIntersectionSelectedIntLatitude
 NearestIntersectionSelectedIntLongitude (degrees) [Get]

Latitude and Longitude of the Selected Intersection. These are the same coordinates as
WaypointIntersectionLatitude and Longitude.

� NearestIntersectionSelectedRefVorId (string) [Get]
� NearestIntersectionSelectedRefVorType (VOR Type enum) [Get]

� NearestIntersectionSelectedRefVorFrequency (MHz) [Get]

� NearestIntersectionSelectedRefVorTrueRadial (degrees) [Get]
� NearestIntersectionSelectedRefVorMagneticRadial (degrees) [Get]

� NearestIntersectionSelectedRefVorDistance (nmiles) [Get]

As far as I can tell, the SelectedRefVor variables are not functional.

There is reason to suspect that RefVor refers to, or should refer to, the VOR closest to
the intersection* consistent with the existing WaypointIntersectionNearestVor variables.
If true, the NearestIntersectionSelectedRefVor variables should return values when
indexed using NearestIntersectionCurrentLine, but they do not.

* the intersection defined by WaypointIntersectionIcao

 86

Nearest VOR Group

A NearestVor search returns a list of VORs nearest the reference point that is normally
set using the current position of the aircraft. It sorts the data by ascending distance. In
very large searches, ascending distance isn’t strictly maintained, but in smaller searches
up to 10 items or so, ascending order seems always to be maintained.

Common with all FS9 Nearest searches, not all available VOR information can be
obtained in a NearestVor search, only the variables that begin with NearestVor. If Class,
Name, Region, Elevation, Weather Broadcast, or Magnetic Variation of a VOR from a
NearestVor search is needed, then an ICAO transfer into WaypointVor must be
performed. Refer to the ICAO Transfer section. This is one area in which the gps
module in FSX is much easier to work with.

� NearestVorCurrentLatitude
� NearestVorCurrentLongitude (degrees) [Get, Set]

Latitude and Longitude of the reference point, usually the aircraft. Input is in degrees
(decimal format, not deg, min, sec) or radians.

� NearestVorMaximumItems (enum) [Get, Set]

The limit of numbers of items to be returned in the search.

� NearestVorMaximumDistance (enum) [Get, Set]

Maximum search radius. Especially in large searches, MaximumDistance is not strictly
adhered to. For some reason apparently having to do with the way the search algorithm
works, some searches return items 20 to 25% more distant than MaximumDistance.

� NearestVorItemsNumber (enum) [Get]

The number of VORs actually returned in the NearestVor search.

� NearestVorCurrentLine (enum) [Get, Set]

The Index pointer. Refer to the GPS Database Search section for further description.

� NearestVorCurrentICAO (string) [Get]

The 12 character ICAO of each VOR retrieved in the NearestVor search

 87

� NearestVorCurrentIdent (string) [Get]

The 1 to 3 character Ident of each VOR retrieved in the NearestVor search.

� NearestVorCurrentType (enum) [Get]

The type of each VOR retrieved in the NearestVor search. It appears that only Type 1 =
VOR, Type 2 = VOR DME, and Type 3 = DME exist in the fs9gps database. See
NearestVorCurrentFilter for additional discussion.

� NearestVorCurrentFrequency (MHz) [Get]

The frequency of each VOR retrieved in the NearestVor search.

� NearestVorCurrentDistance (nmiles or meters) [Get]

The distance of each VOR retrieved in the NearestVor search from the reference point
(NearestVorCurrent Latitude and CurrentLongitude), which is normally set from the
aircraft’s current position.

� NearestVorCurrentTrueBearing (degrees) [Get]

The bearing (true) from the reference point to each VOR retrieved in the NearestVor
search.

� NearestVorCurrentFilter (enum) [Get, Set]

For the fs9gps database, NearestVorCurrentFilter is a number between 0 and 63 that is
the decimal equivalent of the 6 bit binary number that indicates which of the 6 FS9 VOR
types are included in the NearestVor search.

I cannot locate documentation that lists the 6 VOR types, however, Microsoft’s ESP SDK
lists 8 types of VORs (FSX):

Bit VOR Type Bit VOR Type

0 UNKNOWN 4 TACAN

1 VOR 5 VORTAC

2 VOR_DME 6 ILS

3 DME 7 VOT

http://msdn.microsoft.com/en-us/library/cc526954.aspx#VorType

 88

The assumption is that the VOR types for FS9 are:

Bit VOR Type Bit VOR Type

0 UNKNOWN 3 DME

1 VOR 4 TACAN

2 VOR_DME 5 VORTAC

The default fs9gps NearestVorCurrentFilter value is 62. The binary equivalent is
1_1_1_1_1_0.

VOR TYPES

32 16 8 4 2 1 - Decimal value

V
O

R
T
A
C

T
A
C
A
N

D
M

E

V
O

R
_
D

M
E

V
O

R

U
N

K
N

O
W

N
- VOR TYPE

5 4 3 2 1 0 - Bit number (0 thru 5)

1 1 1 1 1 0 - Bit selections

which includes all VOR types except UNKNOWN.

To include only VOR types 1, 2, and 3 in the NearestVor search, the binary would be
0_0_1_1_1_0.

VOR TYPES

32 16 8 4 2 1 - Decimal value

V
O

R
T
A
C

T
A
C
A
N

D
M

E

V
O

R
_
D

M
E

V
O

R

U
N

K
N

O
W

N

- VOR TYPE

5 4 3 2 1 0 - Bit number (0 thru 5)

0 0 1 1 1 0 - Bit selections

the decimal equivalent of which is 14. The xml instruction to set the filter would be:

14 (>C:fs9gps:NearestVorCurrentFilter)

 89

However, the fs9gps database appears to be populated with only 3 types of VORs: Type
1 = VOR, Type 2 = VOR_DME, and Type 3 = DME, so the identities of types 4 and 5 are
irrelevant.

� NearestVorAddVorType (enum) [Set]

NearestVorAddVorType is an enum (not a binary) adds a VOR type to the NearestVor
search. If the following is used

10 (>C:fs9gps:NearestVorCurrentFilter)

then only VOR types 1 and 3 (decimal 10 = binary 0 0 1 0 1 0) will be included in the
NearestVor search, and a typical search result would look like:

But, if a NearestVorAddVorType instruction is added,

10 (>C:fs9gps:NearestVorCurrentFilter)

2 (>C:fs9gps:NearestVorAddVorType)

the NearestVor search changes:

 90

Now, VOR Type 2 has been added, the Filter value becomes 14 (binary 0 0 1 1 1 0, VOR
types 1, 2, and 3), and additional VORs have been found within the 300 mile search
radius.

� NearestVorRemoveVorType (enum) [Set]

NearestVorRemoveVorType functions in the opposite manner from AddVorType. If, for
example, no NearestVorCurrentFilter instruction is given, the default CurrentFilter = 62
is assumed and all VOR types except UNKNOWN are included in the NearestVor search.

The following will remove VOR Type =2 from the NearestVor search:

2 (>C:fs9gps:NearestVorRemoveVorType)

and the search result becomes:

 91

Only VOR types 1, 3, 4 and 5 are included in the search, and the Filter, which had been
the default value 62, is now 58, binary 1 1 1 0 1 0 (the fs9gps database appears to be
populated with no Type 4 or 5 VORs, so none can be found in a search).

� NearestVorSetDefaultFilter (enum) [Set]

NearestVorSetDefaultFilter returns the NearestVor search to the default value
CurrentFilter = 62. The proper syntax is:

(>C:fs9gps:NearestVorSetDefaultFilter)

Note that a value is not required, however you can include anything you want.
Whatever is already in the stack will be fine; a negative number, zero, positive number,
decimal…

To recap:

14 (>C:fs9gps:NearestVorCurrentVorType)

sets the CurrentFilter to 14 (binary 0 0 1 1 1 0) and VOR types 1, 2, and 3 are included
in the NearestVor search.

14 (>C:fs9gps:NearestVorCurrentVorType)

2 (>C:fs9gps:NearestVorRemoveVorType)

 92

removes VOR Type 2, CurrentFilter becomes 10 (binary 0 0 1 0 1 0), and VOR types 1
and 3 are included in the NearestVor search.

14 (>C:fs9gps:NearestVorCurrentVorType)

2 (>C:fs9gps:NearestVorRemoveVorType)

(>C:fs9gps:NearestVorSetDefaultFilter)

resets CurrentFilter to 62 (binary 1 1 1 1 1 0) and all VOR types except UNKNOWN are
included in the NearestVor search. The following SetDefaultFilter statements would all
have done the same thing:

1 (>C:fs9gps:NearestVorSetDefaultFilter)

0 (>C:fs9gps:NearestVorSetDefaultFilter)

-5 (>C:fs9gps:NearestVorSetDefaultFilter)

12.378 (>C:fs9gps:NearestVorSetDefaultFilter)

but,

(C:fs9gps:NearestVorSetDefaultFilter)

will not work.

FSX-ONLY VARIABLES – NearestVor Group

These FSX-only variables add to, or augment the available FS9 NearestVor search
variables except for SelectedVorType and SelectedVorFrequency which are duplicates of
the FS9 counterparts.

 NearestVorSelectedVor (enum) [Get, Set]

The Index pointer. Analogous to NearestVorCurrentLine.

 NearestVorSelectedVorLatitude
 NearestVorSelectedVorLongitude (degrees) [Get]

Latitude and Longitude of the selected VOR. Same coordinates as WaypointVorLatitude
and Longitude.

 93

 NearestVorSelectedVorName (string) [Get]

Name of the selected VOR. Same string as WaypointVorName.

� NearestVorSelectedVorCity (string) [Get]

Returns a blank string. WaypointVorCity appears to not be populated in the gps
database.

 NearestVorSelectedVorType (VOR Type enum) [Get]

The type of each VOR. Same as NearestVorCurrentType described above.

 NearestVorSelectedVorFrequency (MHz) [Get]

The frequency of each VOR. Same as NearestVorCurrentFrequency described above.

 NearestVorSelectedVorMagneticVariation (degrees) [Get]

NearestVorSelectedVorMagneticVariation
is the compass direction of true north.

In this example, A:MAGVAR and A:GPS
MAGVAR would equal +15° (15E).

 94

Nearest NDB Group

A NearestNdb search returns a list of NDBs nearest the reference point that is normally
set from the current aircraft position. It sorts the data by ascending distance. In very
large searches, ascending distance isn’t strictly maintained, but in smaller searches up to
10 items or so, ascending order seems always to be maintained.

Common with all Nearest searches, not all available NDB information can be obtained in
a NearestNdb search, only the variables that begin with NearestNdb. If Name, Region,
Elevation, Weather Broadcast, or Magnetic Variation of a specific NDB found in a
NearestNdb search is needed, then an ICAO transfer into WaypointNdb must be
performed. Refer to the ICAO Transfer section.

� NearestNdbCurrentLatitude
� NearestNdbCurrentLongitude (degrees, radians) [Get, Set]

Latitude and Longitude of the reference point, usually the aircraft. Input is in degrees
(decimal format, not deg, min, sec) or radians.

� NearestNdbMaximumItems (enum) [Get, Set]

The limit of numbers of items to be returned in the search. In practice, this should be
kept realistically small so the NeasrestNdb search returns data quickly. The gps_500
gauge, for example, sets this value to 9.

� NearestNdbMaximumDistance (enum) [Get, Set]

Maximum search radius. Especially in large searches, MaximumDistance is not strictly
adhered to. For some reason apparently having to do with the way the search algorithm
works, some searches return items 20 to 25% more distant than MaximumDistance.

� NearestNdbItemsNumber (enum) [Get]

The number of NDBs actually returned in the NearestNdb search.

� NearestNdbCurrentLine (enum) [Get, Set]

The Index pointer. Refer to the GPS Database Search section for further description.

 95

� NearestNdbCurrentICAO (string) [Get]

The ICAO of each NDB retrieved in the NearestNdb search.

� NearestNdbCurrentIdent (string) [Get]

The 1 to 5 character Ident of each NDB retrieved in the NearestNdb search.

� NearestNdbCurrentType (enum) [Get]

The type of each NDB retrieved in the NearestNdb search.

The following is a list of NDB Type and Class, real life Transmission Power, real life
Effective Range (which may not match how it is modeled in fs9gps):

0._Unknown: There appear to be no Type 0 NDBs in the fs9gps database.

1._Compass Locator: Below 25 watts, 15 - 25 nmiles. Type 1 NDBs are absent
within the U.S.A. in the fs9gps database, but are common in other parts of the
world, especially Europe (eg, U.K.).

2._MH: Below 50 watts, 25 - 50 nmiles. Directional Beacon Approach Facility found
at or near airports where it is the primary approach aid. This is the most common
type of NDB in the fs9gps database.

3._H: 50 to 1,999 watts, 50 - 75 nmiles. Enroute Airway Beacon, common in
Canada and Caribbean

4._HH: 2,000+ watts, 75 - 125 nmiles. High powered Beacon found along coasts
in the U.S.A.

 96

An example of a NearestNdb search:

The “CIT” NDB (CurrentLine 7) contains the “EGTC” airport ident in character positions 4
through 7. This NDB serves as a Terminal Waypoint in a fs9gps approach procedure.
The airport EGTC is the “owner” of the waypoint, consequently, its ident is included in
the NDB ICAO.

� NearestNdbCurrentFrequency (kHz) [Get]

The frequency of each NDB retrieved in the NearestNdb search, usually expressed in
KHz units.

� NearestNdbCurrentDistance (nmiles) [Get]

The distance of each NDB retrieved in the NearestNdb search from the reference point
(NearestNdbCurrent Latitude and CurrentLongitude). The reference point is normally
set from the aircraft’s current position.

� NearestNdbCurrentTrueBearing (degrees or radians) [Get]

The bearing (true) from the reference point to each NDB retrieved in the NearestNdb
search.

 97

FSX-ONLY VARIABLES – NearestNdb Group

These FSX-only variables add to, or augment the available FS9 NearestNdb search
variables except for SelectedNdbType and SelectedNdbFrequency which are duplicates
of the FS9 counterparts.

 NearestNdbSelectedNdb (enum) [Get, Set]

The Index pointer. Analogous to NearestNdbCurrentLine.

 NearestNdbSelectedNdbLatitude
 NearestNdbSelectedNdbLongitude (degrees) [Get]

Latitude and Longitude of the selected NDB. Same coordinates as WaypointNdbLatitude
and Longitude.

 NearestNdbSelectedNdbName (string) [Get]

Name of the selected NDB. Same string as WaypointNdbName.

� NearestNdbSelectedNdbCity (string) [Get]

Returns a blank string. WaypointNdbCity appears to not be populated in the gps
database.

 NearestNdbSelectedNdbType (NDB Type enum) [Get]

The type of each NDB. Same as NearestNdbCurrentType described above.

 NearestNdbSelectedNdbFrequency (KHz) [Get]

The frequency of each NDB. Same as NearestNdbCurrentFrequency described above.

 98

Nearest Airspace Group

All Nearest searches require the latitude and longitude of the reference point, also
known as the Current point, which is normally the aircraft location, plus specified
limitations to the amount of data you want to be returned in the search: maximum
search distance (radius) and maximum number of returned items.

Nearest Airspace searches, however, require more information to define the search than
Nearest Airport, Intersection, VOR, and VOR searches because an airspace is a three
dimensional shape rather than a one dimensional point. Another feature of Nearest
Airspace searches is that some gauges that make use of NearestAirspace, like the stock
MSFS gps_500 gauge, issue messages to the pilot when the aircraft is simply near an
airspace. Consequently, “closeness” to an airspace must also be defined.

Required information for a NearestAirspace search includes CurrentLatitude,
CurrentLongitude, CurrentAltitude, TrueGroundTrack, GroundSpeed, NearDistance,
NearAltitude, AheadTime, Query, MaximumItems and MaximumDistance. The first 5 are
constantly changing in flight and are usually input via an A: variable. The last 6 would
usually not be changed during flight, and are input using standard value declarations in
your code.

� NearestAirspaceCurrentLatitude
� NearestAirspaceCurrentLongitude (degrees) [Get, Set]

The location of the reference point, expressed as latitude and longitude. The units of
Lat/Lon can be degrees (formatted +/-ddd.dddd where S16 degrees 30 minutes would
be formatted as -16.5000) or radians (d.dddd). In most applications, the reference
point for Nearest searches is the current aircraft location.

(A:PLANE LATITUDE, degrees)
(>@c:NearestAirspaceCurrentLatitude, degrees)

(A:PLANE LONGITUDE, degrees)
(>@c:NearestAirspaceCurrentLongitude, degrees)

Some people prefer use of A:PLANE LATITUDE / LONGITUDE rather than A:GPS
POSITION LAT / LON because A:PLANE is updated every gauge update cycle whereas
A:GPS is updated every one second (referring to time, as in 1/60th of a minute).

� NearestAirspaceCurrentAltitude (feet) [Get, Set]

Altitude (ASL) of the reference point, which is normally the aircraft. Common units are
feet or meters.

(A:PLANE ALTITUDE, feet)
(>@c:NearestAirspaceCurrentAltitude, feet)

 99

� NearestAirspaceTrueGroundTrack (degrees) [Get, Set]

Ground track of the aircraft relative to true north.

(A:GPS GROUND TRUE TRACK, degrees)
(>@c:NearestAirspaceTrueGroundTrack, degrees)

� NearestAirspaceGroundSpeed (knots) [Get, Set]

Ground speed of the aircraft.

(A:GPS GROUND SPEED, knots)
(>@c:NearestAirspaceGroundSpeed, knots)

� NearestAirspaceNearDistance (nmiles) [Get, Set]

NearestAirspaceNearDistance is the horizontal distance between the aircraft and an
airspace boundary at which point NearestAirspaceCurrentStatus changes and airspace
encroachment messages can be issued. It is discussed more completely in the
NearestAirspaceCurrentStatus section later in this chapter.

The default is 2 nmiles.

� NearestAirspaceNearAltitude (feet) [Get, Set]

NearestAirspaceNearAltitude is a vertical distance buffer applied to the current aircraft
altitude such that, if the aircraft is within + / - NearAltitude of an airspace floor or
ceiling, the NearestAirspaceCurrentStatus changes and airspace encroachment
messages can be issued. It is discussed more completely in the
NearestAirspaceCurrentStatus section later in this chapter.

The default is 200 feet.

� NearestAirspaceAheadTime (minutes) [Get, Set]

NearestAirspaceAheadTime is the time separation between the aircraft and an airspace
boundary at which point NearestAirspaceCurrentStatus changes and airspace
encroachment messages can be issued. It is computed using
NearestAirspaceGroundSpeed and is discussed more completely in the
NearestAirspaceCurrentStatus section later in this chapter.

The default is 10 minutes.

 100

� NearestAirspaceQuery (6 digit Hexadecimal ‘enum’) [Get, Set]

NearestAirspaceQuery tells the gps.dll which type(s) of airspaces to include in the
NearestAirspace search. This is analogous to IcaoSearchStartCursor which tells the
gps.dll which types of facilities to include in an IcaoSearch.

NearestAirspaceQuery is expressed in Hexadecimal format to more easily define the
types of airspaces to include. It is a six digit hex number which represents 24 bits of
information (6 hex digits x 4 = 24 bits). Since each bit is a 1 or 0, it functions as an
individual ‘include’ / ‘do not include’ switch. Each of the bits is mapped to a specific
airspace type. If the bit corresponding to Class C airspace (Bit 4) is set to 1, then the
NearestAirspace search will include Class C airspaces, otherwise it will not. Any
combination of airspace types can be searched by setting the right bits.

On line 83 of the gps_500 xml gauge, a parameter named kDisplayedAirspaces is
assigned the hex value 0xEFC038. Converting this hex number to binary yields 1110
1111 1100 0000 0011 1000 which contains 12 “1s”, meaning that there are 12
airspace types included in kDisplayedAirspaces.

The complete list of airspace types (24 in total) is:

Bit Airspace Type Bit Airspace Type Bit Airspace Type

0 NONE 8 CLASS_G 16 PROHIBITED

1 CENTER 9 TOWER 17 WARNING

2 CLASS_A 10 CLEARANCE 18 ALERT

3 CLASS_B 11 GROUND 19 DANGER

4 CLASS_C 12 DEPARTURE 20 NATIONAL_PARK

5 CLASS_D 13 APPROACH 21 MODE_C

6 CLASS_E 14 MOA 22 RADAR2

7 CLASS_F 15 RESTRICTED 23 TRAINING

http://msdn.microsoft.com/en-us/library/cc526954.aspx#FAC_BV_TYPE

This binary number displayed in a bit table:

AIRSPACE BIT TABLE

8
,3

8
8
,6

0
8

4
,1

9
4
,3

0
4

2
,0

9
7
,1

5
2

1
,0

4
8
,5

7
6

5
2
4
,2

8
8

2
6
2
,1

4
4

1
3
1
,0

7
2

6
5
,5

3
6

3
2
,7

6
8

1
6
,3

8
4

8
,1

9
2

4
,0

9
6

2
,0

4
8

1
,0

2
4

5
1
2

2
5
6

1
2
8

6
4

3
2

1
6

8 4 2 1 - Decimal value

T
R
A
IN

IN
G

R
A
D

A
R

M
O

D
E
 C

N
A
T
IO

N
A
L

P
A
R
K

D
A
N

G
E
R

A
LE

R
T

W
A
R
N

IN
G

P
R
O

H
IB

IT
E
D

R
E
S
T
R
IC

T
E
D

M
O

A

A
P
P
R
O

A
C
H

D
E
P
A
R
T
U

R
E

G
R
O

U
N

D

C
LE

A
R
A
N

C
E

T
O

W
E
R

C
LA

S
S
 G

C
LA

S
S
 F

C
LA

S
S
 E

C
LA

S
S
 D

C
LA

S
S
 C

C
LA

S
S
 B

C
LA

S
S
 A

C
E
N

T
E
R

N
O

N
E

- AIRSPACE TYPE

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - Bit number (0 thru 23)

1 1 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 - Bit selections

 101

Reading 1110 1111 1100 0000 0011 1000 from right to left as shown in the bit table
above (the right-most digit is always Bit 0, the digit to its left is Bit 1, and so forth) and
comparing each bit to the Airspace list, the NearestAirspace search of
kDisplayedAirspaces will include CLASS_B, CLASS_C, CLASS_D, MOA,
RESTRICTED, PROHIBITED, WARNING, ALERT, DANGER, MODE_C, RADAR,
and TRAINING airspace types. In fact, note that these are listed in the comment line
(line 82) directly above the kDisplayedAirspaces declaration.

The other NearestAirspaceQuery listed in the gps_500 gauge is
kAlwaysDisplayedAirspaces = 0x0FC000 (line 85). Its binary equivalent is:

AIRSPACE BIT TABLE

8
,3

8
8
,6

0
8

4
,1

9
4
,3

0
4

2
,0

9
7
,1

5
2

1
,0

4
8
,5

7
6

5
2
4
,2

8
8

2
6
2
,1

4
4

1
3
1
,0

7
2

6
5
,5

3
6

3
2
,7

6
8

1
6
,3

8
4

8
,1

9
2

4
,0

9
6

2
,0

4
8

1
,0

2
4

5
1
2

2
5
6

1
2
8

6
4

3
2

1
6

8 4 2 1 - Decimal value

T
R
A
IN

IN
G

R
A
D

A
R

M
O

D
E
 C

N
A
T
IO

N
A
L

P
A
R
K

D
A
N

G
E
R

A
LE

R
T

W
A
R
N

IN
G

P
R
O

H
IB

IT
E
D

R
E
S
T
R
IC

T
E
D

M
O

A

A
P
P
R
O

A
C
H

D
E
P
A
R
T
U

R
E

G
R
O

U
N

D

C
LE

A
R
A
N

C
E

T
O

W
E
R

C
LA

S
S
 G

C
LA

S
S
 F

C
LA

S
S
 E

C
LA

S
S
 D

C
LA

S
S
 C

C
LA

S
S
 B

C
LA

S
S
 A

C
E
N

T
E
R

N
O

N
E

- AIRSPACE TYPE

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - Bit number (0 thru 23)

0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - Bit selections

which means that kAlwaysDisplayedAirspaces includes MOA, RESTRICTED,
PROHIBITED, WARNING, ALERT, and DANGER airspace types.

To include any combination of airspaces, create a binary number by indicating 1 or 0
(include or don’t include) for each of the 24 airspace types. Start with Airspace Type 0
(Bit 0) and work up the list to Airspace Type 23 (Bit 23), building the number from right
to left. Once a 24 digit number is assembled from this selection process, convert it to
hexadecimal format and enter that number into NearestAirspaceQuery.

If you wanted to include TRAINING, RADAR, DANGER, ALERT, WARNING, MOA,
and CLASS_C airspaces in a NearestAirspace search, the binary would be:

AIRSPACE BIT TABLE

8
,3

8
8
,6

0
8

4
,1

9
4
,3

0
4

2
,0

9
7
,1

5
2

1
,0

4
8
,5

7
6

5
2
4
,2

8
8

2
6
2
,1

4
4

1
3
1
,0

7
2

6
5
,5

3
6

3
2
,7

6
8

1
6
,3

8
4

8
,1

9
2

4
,0

9
6

2
,0

4
8

1
,0

2
4

5
1
2

2
5
6

1
2
8

6
4

3
2

1
6

8 4 2 1 - Decimal value

T
R
A
IN

IN
G

R
A
D

A
R

M
O

D
E
 C

N
A
T
IO

N
A
L

P
A
R
K

D
A
N

G
E
R

A
LE

R
T

W
A
R
N

IN
G

P
R
O

H
IB

IT
E
D

R
E
S
T
R
IC

T
E
D

M
O

A

A
P
P
R
O

A
C
H

D
E
P
A
R
T
U

R
E

G
R
O

U
N

D

C
LE

A
R
A
N

C
E

T
O

W
E
R

C
LA

S
S
 G

C
LA

S
S
 F

C
LA

S
S
 E

C
LA

S
S
 D

C
LA

S
S
 C

C
LA

S
S
 B

C
LA

S
S
 A

C
E
N

T
E
R

N
O

N
E

- AIRSPACE TYPE

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 - Bit number (0 thru 23)

1 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 - Bit selections

 102

the hexadecimal equivalent of which is 0xCE4010. The proper xml instruction is:

0xCE4010 (>C:fs9gps:NearestAirspaceQuery)

It is also acceptable to enter the decimal equivalent instead, although that approach
may not make as much sense given the binary origin of the number:

13516816 (>C:fs9gps:NearestAirspaceQuery)

� NearestAirspaceMaximumItems (enum) [Get, Set]

Maximum number of airspace sectors that will be included in the search results. After
this number of items is reached, the search process terminates.

9 (>@c:NearestAirspaceMaximumItems)

In the gps_500 gauge, “9” is used for maximum search items, matching the capability of
the Garmin GNS 500 / 530 / 530A system after which it is modeled. When a Nearest
search concludes, the list of 9 items (Airports, Intersections, VORs, VORs, or Airspaces)
is displayed using a {loop} within a <String> expression, with the Nearest being at the
top.

� NearestAirspaceMaximumDistance (nmiles, meters) [Get, Set]

The maximum distance (radius) the search will extend from the reference point. If the
search reaches this limit, it will terminate and Airspaces beyond MaximumDistance will
not be included (by definition).

The NearestAirspace search will terminate when the earlier of
NearestAirspaceMaximumItems or NearestAirspaceMaximumDistance is reached.

100 (>@c:NearestAirspaceMaximumDistance, nmiles)

� NearestAirspaceItemsNumber (enum) [Get]

The number of items actually retrieved during the NearestAirspace search, within the
limitation specified by MaximumItems.

� NearestAirspaceCurrentLine (enum) [Get, Set]

The Index pointer. NearestAirspace search returns a list of airspace sectors. Setting
NearestAirspaceCurrentLine allows you to select a specific sector in the list. Index
numbers always start at 0.

 103

� NearestAirspaceCurrentName (string) [Get]

The name of the airspace. For many airspace types, this is a descriptive, often
recognizable name associated with the particular airspace location. In NearestAirspace
searches, different sectors of the same airspace will sometimes have the same
CurrentName, but are differentiated by different CurrentMinAltitude and
CurrentMaxAltitudes and different CurrentNearDistance and CurrentAheadTime.

Center (type 1) airspaces have 8 character names constructed from the Region ID, the
Center ID and Airspace names. As an example, the Center airspace name that
Rotterdam, the Netherlands is within begins with the Netherlands Region ID, “EH”, then
the Center ID, “AA”, then the Airspace name, 2302 which forms CurrentName
EHAA2302. In the United States, the single character Region ID “K” is used, followed by
the Air Route Traffic Control Center ID, then the Airspace name. For example, the
Center airspace that Chicago O’Hare International airport is within is named KZAU4988.
“ZAU” is the ARTCC ID, and 4988 is the Airspace name.

� NearestAirspaceCurrentType (enum) [Get]

AirspaceCurrentType is a number representing airspace type. Refer to the Airspace Bit
Table in NearestAirspaceQuery section. In MSFS, it is possible to be inside more than
one airspace type or sector at the same time.

� NearestAirspaceCurrentFrequency (MHz) [Get]
� NearestAirspaceCurrentFrequencyName (string = “Center”) [Get]

NearestAirspaceCurrentFrequency is the radio frequency (MHz) of Center airspace types
found in a NearestAirspace search. Center airspaces types (type=1) must be included in

 104

NearestAirspaceQuery in order for CurrentFrequency to return a value other than 0.0.
Apparently, only Center airspaces have an associated CurrentFrequency and
CurrentFrequencyName. Airspace types 9, 10, 11, 12, and 13 (Tower, Clearance,
Ground, Departure, and Approach) do not appear to have an associated
CurrentFrequency and CurrentFrequencyName.

A NearestAirspace search that includes Centers may return several Center airspaces, all
with different CurrentFrequency but the same CurrentFrequencyName, “Center”.
Centers have CurrentMinAltitude=0 (ground surface) and CurrentMaxAltitude=100000
meters or 328084 feet (edge of space).

As with all NearestAirspace search results, the airspace with the highest
NearestAirspaceCurrentStatus will be listed first, then airspaces will be sorted by
increasing distance from the reference point, which is usually the aircraft.

� NearestAirspaceCurrentMinAltitude (feet) [Get]
� NearestAirspaceCurrentMaxAltitude (feet) [Get]

The floor and ceiling of the airspace sector, measured above mean sea level. In fs9gps
nomenclature, a value of 0 for MinAltitude refers to the ground surface. On aeronautical
maps, it would be abbreviated “SFC”; in fs9gps terms, “0”.

� NearestAirspaceCurrentStatus (enum: 0, 1, 2, 3, or 4) [Get]

NearestAirspaceCurrentStatus is a number that reflects an aircraft’s positional status
relative to nearby airspaces. It is determined from the “closeness” of the aircraft to
airspace sectors in either x, y, z space or time. CurrentStatus, in turn, controls
MessageItemsNumber and MessageCurrentType that can be used to display warning
messages to the pilot. How close the aircraft needs to be to trigger a CurrentStatus
change is determined by variables NearDistance, NearAltitude, and NearTime.

In x, y, z space, one way to think about “closeness” is to visualize as a disk extending
outward from the aircraft NearDistance nmiles, whose height is two times NearAltitude
feet, with the aircraft in the center. In the two dimensional diagram below, it is
represented by the gray rectangle. When this “Closeness Space” (admittedly, not a
proper name) touches/enters or exits an airspace sector, CurrentStatus changes. If the
aircraft in the figure below is at an altitude of 1800’, then as it flies through the
Milwaukee airspace, CurrentStatus changes will be triggered when the “Closeness
Space” touches Sector 1 and Sector 2. Regarding Sector 3, the aircraft is too low, or
NearAltitude is too small, to trigger CurrentStatus values above 0.

In addition to x,y,z position, enroute time “closeness” also controls, or triggers,
CurrentStatus changes.

 105

EXAMPLE AIRSPACE STATUS and MESSAGES

MILWAUKEE CLASS C AIRSPACE

4700

2200

4700 4700

1900

MILWAUKEE CLASS C AIRSPACE

0 (Surface)

Airspace Sector

Airspace SectorAirspace Sector

NearestAirspaceCurrentNearDistance

NearestAirspaceCurrentNearDistance

NearestAirspaceNearDistance = 2 nmiles radius

NearestAirspaceNearAltitude = 200’
above and below aircraft

200’

200’

“Closeness Space”

to airspace Sector 1

to airspace Sector 3

 106

Enroute Time and Distance triggers can be demonstrated by tracking CurrentStatus
changes in an example flight. In the figure below, an aircraft flies from Point 1
eastward through the Cedar Rapids Class C Airspace, continuing past Point 9.

CurrentStatus changes occur at various times and positions as the aircraft flies from
west to east, as summarized in the table below. For the sake of simplicity, only the
search results associated with Airspace Sector A (4900’/2100’) are discussed:

Point

Airspace

Current

Status

Toward /

Away from

Airspace

Trigger

Type Trigger Condition for Status Change

Message

Current

Type gps_500 Message

1 none N/A Time
CurrentAheadTime > 1.20 x AheadTime

Aircraft too far from Airspace Sector A to display in Search
0 = NONE none

2 0 Toward Time
CurrentAheadTime ≤ 1.20 x AheadTime

Aircraft appears in NearestAirspace search display
0 = NONE none

3 2 Toward Time CurrentAheadTime ≤ 1.00 x AheadTime 2 = AHEAD
Airspace ahead -- less

than 10 minutes

4 3 Toward Distance CurrrentNearDistance ≤ 1.00 x NearDistance 3 = NEAR_AHEAD
Airspace near and

ahead

5 4 Inside Distance Entering Airspace Sector A 4 = INSIDE Inside Airspace

6 4 Inside Distance Inside Airspace Sector A 4 = INSIDE Inside Airspace

7 1 Away Distance
Exiting Airspace Sector A

CurrrentNearDistance counts upward from 0.00
1 = NEAR none

8 0 Away Distance CurrrentNearDistance ≥ 1.00 x NearDistance 0 = NONE none

9 none N/A Distance
CurrrentNearDistance ≥ 2.00 x NearDistance

Aircraft too far from Airspace Sector A, dropped from Search
0 = NONE none

 Point 1_ – The aircraft is too distant (in time) from Airspace Sector A to be displayed in
the NearestAirspace search.

 107

 Point 2_ – Airspace Sector A (4900’/2100’) first appears in the NearestAirspace search
display when CurrentAheadTime = 1.20 x AheadTime = 12 minutes. The 1.20 factor
appears to be hard coded into the gps module. The initial CurrentStatus is 0.

 Point 3_ - CurrentAheadTime = AheadTime. CurrentStatus = 2. MessageCurrentType
= 2. gps_500 message = “Airspace ahead -- less than 10 minutes”. CurrentStatus
changes to 2 when CurrentAheadTime = AheadTime.

 Point 4_ – CurrentNearDistance = NearDistance. CurrentStatus = 3.
MessageCurrentType = 3. gps_500 message = “Airspace near and ahead”.

 Point 5_ – Entering Airspace Sector A. CurrentNearDistance = 0. CurrentStatus = 4.
MessageCurrentType = 4. gps_500 message = “Inside Airspace”.

 108

 Point 6_ – Aircraft is inside both Sector A and B. For both sectors, CurrentNearDistance
= 0. CurrentStatus = 4. MessageCurrentType = 4. gps_500 message = “Inside
Airspace”.

 Point 7_ – Exiting Airspace Sector A. CurrentNearDistance = 0, and begins counting
upwards. CurrentStatus = 1. MessageCurrentType = 1. gps_500 message = none.
Note that AheadTime equals 8464.92 minutes. At 153 knots ground speed, this equates
to 21,586 nmiles, which is the circumference of the earth at 2200’ asl. This is an
indication the airspace sector is behind the aircraft.

 Point 8_ - CurrentNearDistance = 2.0 and still counting upwards. CurrentStatus = 0.
MessageCurrentType = 0. gps_500 message = none.

 Point 9_ - CurrentNearDistance = 2.0 = 2.00 x NearDistance. At 2 times NearDistance,
the airspace sector is dropped out of the NearestAirspace search display. The 2.00
factor appears to be hard coded into the gps module.

The results of a NearestAirspace search are always sorted first by CurrentStatus, then by
increasing distance. All the Status = 4 airspaces are first listed in ascending distance,
then the Status = 3 airspaces are listed in ascending order, and so forth.

 109

� NearestAirspaceCurrentNearDistance (nmiles) [Get]

NearestAirspaceCurrentNearDistance is the ground distance between the current
position of the aircraft and the closest point of each airspace sector to the aircraft (or
other reference point).

The figure below demonstrates NearestAirspaceCurrentNearDistance for an aircraft near
Chicago Midway International airport after a NearestAirspace search of Class “C”
airspaces.

The NearestAirspace search returns a separate CurrentNearDistance for each airspace
sector. Note the confusing (to me) result of the far airspace, 3599 / 1900.
CurrentNearDistance of this sector is the same as the closest airspace that extends to
the surface. CurrentNearDistance rules pertaining to ‘hidden’ or ‘farthest’ sectors such
as this are not clear to me.

� NearestAirspaceCurrentAheadTime (minutes) [Get]

NearestAirspaceCurrentAheadTime is the enroute (elapsed) time until the aircraft
physically enters the airspace sector. When flying toward an airspace sector,
AheadTime counts down, starting at 12 minutes when the sector first appears in
NearestAirspace search. CurrentAheadTime = 0 while the aircraft is inside the sector.
Leaving the airspace sector is more interesting. Upon exit, CurrentAheadTime resumes
a countdown until the aircraft again enters the sector after flying around the globe.
However, the NearestAirspace distance trigger, CurrentNearDistance, drops the sector
from NearestAirspace search when CurrentNearDstance is 2X NearDistance.

2599

1900
3599

0

3599

1900

2999

0

1899

0

1899

0

1899

0

: NearestAirspaceCurrentMaxAltitude
: NearestAirspaceCurrentMinAltitude

Aircraft location:

N41° 59.29’

W88° 01.92’

Altitude 1500 feet

Hdg 090°

12.4 nmiles

12.7 nmiles

17.0 nmiles

10.5 nmiles

12.4 nmiles
... very confusing

NearestAirspaceCurrentNearDistance

CHICAGO MIDWAY CLASS C AIRSPACE

The 3599/1900 Sector:

 110

Message Group

The Message Group variables control the content of the Airspace messages displayed by
the gps_500 gauge. They do not control when a message is displayed – variables in the
NearestAirspace Group do that. Instead, the Message Group variables determine which
message will be displayed.

There are four different airspace messages in the gps_500 gauge, and under the right
circumstances, up to three can be displayed at the same time. Consequently, the
messages are indexed, and a typical display loop is used for the display.

� MessageItemsNumber (enum) [Get]

MessageItemsNumber is the number of messages that are active and can be seen by
pressing the MSG button on the gps_500 gauge.

� MessageCurrentLine (enum) [Get, Set]

MessageCurrentLine is the Index pointer used in the display.

� MessageCurrentType (enum) [Get]

MessageCurrentType is the id number of the specific message.

1. Near Airspace – less than 2 nm

2. Airspace ahead – less than 10 minutes

3. Airspace near and ahead

4. Inside Airspace

� NewMessagesNumber (enum) [Get]

NewMessagesNumber indicates the number of new messages waiting to be read. It is
reset to 0 when the pilot presses the MSG Button to view the messages, but can
increase from 1 to 2 or 3 if the messages are ignored.

� NewMessagesConfirm (enum) [Set]

NewMessagesConfirm is a write-only variable that is set to 1 when the pilot presses the
MSG Button after viewing the message(s).

 111

ICAO Search Group

ICAOSearch is a procedure that attempts to find ICAOs that contain the Ident the user
enters. The ICAO is important because it is required before access to variables in the
Waypoint Groups is possible. ICAOSearch data entry can be accomplished via direct
keyboard entry, mouse click, or from code.

While the 12 character ICAO is unique, Idents are sometimes not, and consequently
ICAOSearch may find multiple ICAOs that can be matched to the Ident. Because of this,
ICAOSearch results are indexed and require an Index Pointer in order to access the
desired ICAO in the list returned by ICAOSearch. Often, however, only one ICAO is
found that matches the input parameters and the default Index Pointer value 0 (zero)
automatically takes care of selection of the proper ICAO.

NameSearch ICAOSearch

Facility

Waypoint

Group

Name

Exists?

NAME

Searchable?

IDENT

Exists? ICAO Type

IDENT

Searchable?

AIRPORT AIRPORT YES YES YES A YES

RUNWAY WAYPOINT None NO NO YES R NO

VOR VOR YES NO YES V YES

ILS / LOC AIRPORT YES NO YES V YES

NDB NDB YES NO YES N or X YES

fs9gps WAYPOINT INTERSECTION NO NO YES W YES

USER WAYPOINT None NO NO NO None NO

� IcaoSearchInitialIcao (string) [Get, Set]

IcaoSearchInitialIcao is the ICAO of the first Ident displayed as certain gps_500 pages
containing ICAOSearch code open. It is set by the current FacilityICAO (gps_500 lines
3808 and 3813). In the event that user input updates ICAOSearch and the Ident
displayed on the screen changes, but the user ultimately cancels the selections, then the
current ICAO will revert back to IcaoSearchInitialIcao.

� IcaoSearchStartCursor (1 to 5 character string) [Set]

IcaoSearchStartCursor is used to filter, or restrict, the gps search of ICAOs to those of a
certain type:

Only 'A', 'V', 'N', 'X', or 'W' may be used in IcaoSearchStartCursor.

Combinations of the letters can also be entered. 'AVNW' will enable a search of all types
of ICAOs. However, duplicate ICAOs will be returned for a facility that serves a double
role as Navaid ('V' or 'N') and 'W'aypoint. For example, 'VNW' StartCursor will yield
double (two) VK3_ _ _ _CVA ICAOs for a 'CVA' EnterChar.

 112

StartCursor FACILITY

A AIRPORT

V VOR

N or X NDB

W WAYPOINT / INTERSECTION

M Does Not Exist

The gps_500 gauge suggests a StartCursor of 'M', Marker (gps_500 lines 3813, 3814),
but no searchable Facility with StartCursor 'M' exists in the fs9gps database.

� IcaoSearchStopCursor (enum) [Set]

I am not completely sure what this variable accomplishes. IcaoSearchStopCursor is an
enum that appears only in the Enter and Clear macros in the gps_500 (<Macro
Name=“ENTButton” > and <Macro Name=“CancelInput” >). The value assigned in

the macro is always zero. Consequently, it appears related to the cancelation of user
input (“Cursor”).

Having said that, I’ve not yet needed StopCursor in any of the scripts written in
preparation of this guidebook. As well, I’ve assigned different values to StopCursor and
also removed it from the gps_500 gauge, all with no effect that I have been able to see.

MSFT put it there for a reason, but so far, it escapes me.

DATA ENTRY METHODS FOR ICAOSearch

There are three methods of data entry of the search filter and Ident:

1. Keyboard Direct Entry. The user types input information on the keyboard.
IcaoSearchEnterChar will automatically invoke IcaoSearchAdvanceCursor and
automatically concatenate keystroke entries, allowing for continuous typing.

<On Key="AlphaNumeric">

<Visible> (L:ICAOSearchEntry, enum) 101 == </Visibl e>

(M:Key) chr (>@c:IcaoSearchEnterChar)

</On>

2. Mouse. Click spots are used to mimic the use of knobs to enter the Ident, as in
a Garmin GNS 500 or the FS9 gps_500 gauge. Note that in the example below,
IcaoSearchAdvanceCursor and IcaoSearchAdvanceCharacter are used, but
IcaoSearchEnterChar is not needed. When entering an Ident with the mouse, as
the user advances the cursor, 1 (>C:fs9gps:IcaoSearchAdvanceCursor) , the
character currently selected by AdvanceCharacter is automatically entered into

 113

EnterChar. Additionally, as the cursor continues to advance, the character
selected using AdvanceCharacter is concatenated with the previous characters,
thus building the Ident string. The string is passed to EnterChar each time a
character is selected (each time AdvanceCharacter is ‘clicked’).

Garmin-type GNS knob, Upper Left click spot:

<Area Left="470" Top="307" Width="25" Height="12">

<Cursor Type="Hand" />

<Click Kind="LeftSingle" Repeat="No">

-1 (>C:fs9gps:IcaoSearchAdvanceCursor)

</Click>

</Area>

Upper Right click spot:

<Area Left="500" Top="307" Width="25" Height="12">

<Cursor Type="Hand" />

<Click Kind="LeftSingle" Repeat="No">

1 (>C:fs9gps:IcaoSearchAdvanceCursor)

</Click>

</Area>

Lower Left click spot:

<Area Left="480" Top="336" Width="15" Height="12">

<Cursor Type="Hand" />

<Click Kind="LeftSingle" Repeat="Yes">

-1 (>C:fs9gps:IcaoSearchAdvanceCharacter)

</Click>

</Area>

Lower Right click spot:

<Area Left="500" Top="336" Width="15" Height="12">

<Cursor Type="Hand" />

<Click Kind="LeftSingle" Repeat="Yes">

1 (>C:fs9gps:IcaoSearchAdvanceCharacter)

</Click>

</Area>

 114

3. XML Script (code) Entry. The users XML gauge code may enter data into the
IcaoSearchEnterChar variable:

'V' (>C:fs9gps:IcaoSearchStartCursor)

For the variable StartCursor, code entry is always used, not keyboard or mouse
entry.

(A:NAV1 Ident, string) (>C:fs9gps:IcaoSearchEnterCh ar)

or

'SEA' (>C:fs9gps:IcaoSearchEnterChar)

Up to 5 characters can be entered at once using Code Entry.

� IcaoSearchAdvanceCursor (enum) [Set]

IcaoSearchAdvanceCursor is cursor position ‘incrementer’ necessary when mouse entry
of the Ident string is used, as if manipulating the large right knob on a Garmin GNS 500
or the FS9 stock gps-500 gauge.

AdvanceCursor value of 1 or -1, will advance the cursor one position, or back up one
position. Not only does -1 cause the cursor to back up one position, so does -2, -3, etc -
- they all cause the cursor to back up only one position. A zero value causes the cursor
to not move, although zero is not a logical choice for any application. A value of 1 or
greater causes the cursor to advance, but only one position at a time regardless of
AdvanceCursor value.

� IcaoSearchAdvanceCharacter (enum) [Set]

An alphabet advance or backup ‘incrementer’. Either 1 or -1 is used for input. The
value -1 (or any other negative value) causes the letter at the current cursor position to
back up one letter of the alphabet at a time. An AdvanceCharacter value of zero causes
no progress or back up in the alphabet, but, of course, would be an illogical choice for
applications. A value of 1 (or any positive integer) causes an advance of one letter in
the alphabet.

For Airports, the alphabet values are Alphanumeric characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789

The 'space' character is between Z and 0 (zero). Advancing one character from ‘9’
yields ‘A’. Backing up one character from ‘0’ (zero) yields the space character. Backup
one more yields ‘Z’.

 115

For other Facilities, the alphabet values are ASCII characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

!"#$%&'()*+,-./:;<=>?@[]^_`{|}~space

The last character is the space character. These are shown in the order they are
processed by AdvanceCharacter.

Summarizing,

1 (>c:fs9gps:IcaoSearchAdvanceCharacter)

causes the next letter to be selected, and

-1 (>c:fs9gps:IcaoSearchAdvanceCharacter)

causes the previous letter to be selected.

� IcaoSearchEnterChar (string) [Set]

Similar with AdvanceCharacter and AdvanceCursor, IcaoSearchEnterChar is used to
enter the Ident string that the gps module will search for in its database. EnterChar
automatically concatenates the Ident character entry to form CurrentIdent. As an
example using keyboard direct entry, the user types A, B, C, D, E, F, and then G, and
gets the following results:

Keyboard Entry
Sequence EnterChar CurrentIdent String Length
1 - 'A' A A 1
2 - 'B' B AB 2
3 - 'C' C ABC 3
4 - 'D D ABCD 4
5 - 'E' E ABCDE 5
6 - 'F' F ABCDF 5
7 - 'G' G ABCDG 5

Cursor Advance Concatenation

Keyboard Direct Entry Automatic Automatic

Mouse Entry by Mouse Automatic

Code Entry Not Necessary Not Necessary

 116

There is a 5 character limit to Ident entry because Idents have a maximum string length
of 5 characters. If more than 5 characters are entered, then the letter in cursor position
4 (the 5th character - the first cursor position is numbered zero) is replaced with the
excess character, as above.

If EnterChar is used in association with direct keyboard entry, then the <On Key>
parameters AlphaNumeric or Ascii determine which characters may be entered.

Using AlphaNumeric, only characters

ABCDEFGHIJKLMNOPQRSTUVWXYZ 1234567890

may be entered. AlphaNumeric is a good choice for Idents of an ICAOSearch.

Ascii is similar to AlphaNumeric except that characters “+”, “-“, “,”, and “.” (plus,
minus, comma and period/decimal point) are also accepted. Ascii is the choice when
entering numbers such as Latitude and Longitude because of the minus sign and
decimal point. Note that the gps_500 gauge uses Ascii for NameSearch entry (see line
3947).

� IcaoSearchBackupChar (enum) [Set]

IcaoSearchBackupChar is used for backspace when entering Ident via keyboard direct
entry.

For example, from gps_500 lines 3951 – 3955:

<On Key="Backspace">

<Visible> (C:fs9gps:enteringInput) </Visible>

10 19 (C:fs9gps:enteringInput) rng 31

(C:fs9gps:enteringInput) == ||

if{

-1 (>C:fs9gps:IcaoSearchBackupChar) @InitBlinker qu it

}

</On>

 117

Another, simpler example:

<On Key="Backspace">

<Visible>(L:AsciiEntryEnable, bool)</Visible>

(M:Key) (>C:fs9gps:IcaoSearchBackupChar)

</On>

Neither (M:Key) nor a number actually need to be entered in order to create a
backspace. All of the following create a single backspace at a time as the keyboard
backspace key is entered:

<On Key="Backspace">

<Visible>(L:AsciiEntryEnable, bool)</Visible>

(M:Key) -1 (>C:fs9gps:IcaoSearchBackupChar)

</On>

<On Key="Backspace">

<Visible>(L:AsciiEntryEnable, bool)</Visible>

(M:Key) 1 (>C:fs9gps:IcaoSearchBackupChar)

</On>

<On Key="Backspace">

<Visible>(L:AsciiEntryEnable, bool)</Visible>

(M:Key) 0 (>C:fs9gps:IcaoSearchBackupChar)

</On>

<On Key="Backspace">

<Visible>(L:AsciiEntryEnable, bool)</Visible>

(M:Key) -200 (>C:fs9gps:IcaoSearchBackupChar)

</On>

<On Key="Backspace">

<Visible>(L:AsciiEntryEnable, bool)</Visible>

(>C:fs9gps:IcaoSearchBackupChar)

</On>

Note the use of <Visible> tags. In the examples above, only when
L:AsciiEntryEnable = 1 will keyboard direct entry for the Ident work. The ability

 118

to “turn off” keyboard direct entry is necessary in order to retain normal FS9/X keyboard
entry instructions such as “G” = Landing Gear Toggle when Ident entry is not needed.

� IcaoSearchCursorPosition (enum) [Get]

IcaoSearchCursorPosition is the current cursor position of the Ident entry. The first
character entered is CursorPosition 0. The second is CursorPosition 1, and so forth.

CursorPosition is active for all types of Ident entry – keyboard, mouse, code.

� IcaoSearchCurrentIdent (string) [Get]

IcaoSearchCurrentIdent is the facility Ident constructed (concatenated) as the user
enters Ident characters. It grows (SLEN increases by one) with each keystroke or
mouse AdvanceCursor entry.

� IcaoSearchCurrentIcao (string) [Get, Set]

IcaoSearchCurrentIcao is the ICAO formed using StartCursor and CurrentIdent. Because
Idents are not unique, there may be multiple ICAOs that can be matched to StartCursor
and CurrentIdent. Consequently, CurrentIcao is an indexed variable (a list) that requires
an Index Pointer (IcaoSearchMatchedIcao) to access.

With each Ident character entry, the gps module searches the database for ICAOs
containing StartCursor and CurrentIdent and if there are any, the number of matches is
stored into IcaoSearchMatchedIcaosNumber.

� IcaoSearchCurrentIcaoType (string) [Get]

IcaoSearchCurrentIcaoType is the facility type and is the same as StartCursor:

 IcaoType Facility
 A Airport
 V VOR, ILS, LOC
 N VOR
 W Waypoint, Intersection

� IcaoSearchCurrentIcaoRegion (string, SLEN=2) [Get]

The two character Region code.

 119

� IcaoSearchMatchedIcaosNumber (enum) [Get]

IcaoSearchMatchedIcaosNumber is the number of ICAOs that were matched to
StartCursor and CurrentIdent during ICAOSearch.

� IcaoSearchMatchedIcao (enum) [Get, Set]

The Index Pointer used to access specific ICAOs returned by ICAOSearch. The default is
zero.

RESOLVING MULTIPLE IDENT MATCHES

An example of one method that can be used to resolve multiple ICAOSearch matches is
discussed in the ICAO Search Example chapter (starting on page 38).

 120

Name Search Group

NameSearch is a procedure that allows the user to retrieve the ICAO by entering facility
Name. It is limited to Airport Name search only. The ICAO is important because it is
required before access to variables in the Waypoint Airport Group is possible.
NameSearch data entry can be accomplished via direct keyboard entry, mouse click, or
from code.

NameSearch ICAOSearch

Facility

Waypoint

Group

Name

Exists?

NAME

Searchable?

IDENT

Exists? ICAO Type

IDENT

Searchable?

AIRPORT AIRPORT YES YES YES A YES

RUNWAY WAYPOINT None NO NO YES R NO

VOR VOR YES NO YES V YES

ILS / LOC AIRPORT YES NO YES V YES

NDB NDB YES NO YES N or X YES

fs9gps WAYPOINT INTERSECTION NO NO YES W YES

USER WAYPOINT None NO NO NO None NO

� NameSearchInitialIcao (string) [Get, Set]

NameSearchInitialIcao is the ICAO of the first Name displayed as certain
gps_500 pages containing NameSearch code open. It is set by the current
FacilityICAO (gps_500 lines 3809 and 3814). In the event that user input
updates NameSearch and the Name displayed on the screen changes, but the
user ultimately cancels the selections, then the current ICAO will revert back to
NameSearchInitialIcao.

� NameSearchInitialName (string) [Get, Set]

NameSearchInitialName is the Airport Name associated with NameSearchInitialIcao.

� NameSearchStartCursor (string) [Set]

NameSearchStartCursor is included in the gps_500 gauge (line 3814) in parallel with
NameSearch input. Unlike NameSearchStartCursor, however, it appears to be non-
functional and not needed.

� NameSearchStopCursor (enum) [Set]

I am not sure what this variable does. NameSearchStopCursor is an enum that is used
only in the Enter and Clear macros in the gps_500 (<Macro Name=“ ENTButton ” > and

 121

<Macro Name=“CancelInput” >). In the macros, the value assigned to each is

always zero. The value assigned in the macro is always zero. Consequently, it appears
related to the cancelation of user input (“Cursor”).

Having said that, I’ve not needed StopCursor, not yet anyway, in any of the scripts
written in preparation of this guidebook. As well, I’ve assigned different values to
StopCursor and also removed it from the gps_500 gauge, all with no effect that I have
have been able to see.

MSFT put it there for a reason, but so far, it escapes me.

� NameSearchAdvanceCursor (enum) [Set]

NameSearchAdvanceCursor is cursor position ‘incrementer’ necessary when mouse entry
of the Ident string is used, as if manipulating the large right knob on a Garmin GNS 500
or the FS9 stock gps-500 gauge.

AdvanceCursor value of 1 or -1, will advance the cursor one position, or back up one
position. Not only does -1 cause the cursor to back up one position, so does -2, -3, etc -
- they all cause the cursor to back up only one position. A zero value causes the cursor
to not move, although zero is not a logical choice for any application. A value of 1 or
greater causes the cursor to advance, but only one position at a time regardless of
AdvanceCursor value.

� NameSearchAdvanceCharacter (enum) [Set]

An alphabet advance or backup ‘incrementer’. Either 1 or -1 is used for input. The
value -1 (or any other negative value) causes the letter at the current cursor position to
back up one letter of the alphabet at a time. An AdvanceCharacter value of zero causes
no progress or back up in the alphabet, but, of course, would be an illogical choice for
applications. A value of 1 (or any positive integer) causes an advance of one letter in
the alphabet.

For Airports, the alphabet values are alphanumeric characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ 0123456789

The 'space' character is between Z and 0 (zero). Advancing one character from ‘9’
yields ‘A’. Backing up one character from ‘0’ (zero) yields the space character. Backup
one more yields ‘Z’.

Summarizing,

1 (>c:fs9gps:NameSearchAdvanceCharacter)

causes the next letter to be selected, and

-1 (>c:fs9gps:NameSearchAdvanceCharacter)

causes the previous letter to be selected.

 122

� NameSearchEnterChar (string) [Set]

NameSearchEnterChar is used to enter the Name string that the gps module will search
for in its database.

DATA ENTRY METHODS FOR NameSearch

There are three common methods of data entry/input of the search filter and Name:

1. Keyboard Direct Entry. The user types input information on the keyboard.
EnterChar will automatically invoke NameSearchAdvanceCursor and automatically
concatenate keystroke entries, allowing for continuous typing.

<On Key="AlphaNumeric">

<Visible> (L:NameSearchEntry, enum) 101 == </Visibl e>

(M:Key) chr (>@c:NameSearchEnterChar)

</On>

2. Mouse Entry. Click spots are used to mimic the use of knobs to enter the
Name, as in a Garmin GNS 500 or the FS9 gps_500 gauge. Note that in the
example below, NameSearchAdvanceCursor and NameSearchAdvanceCharacter
are used, but NameSearchEnterChar is not needed. When entering a Name with
the mouse, as the user advances the cursor,

1 (>C:fs9gps:NameSearchAdvanceCursor) ,

the character currently selected by AdvanceCharacter is automatically entered
into EnterChar. Additionally, as the cursor continues to advance, the character
selected using AdvanceCharacter is concatenated with the previous characters,
thus building the Name string. The string is passed to EnterChar each time a
character is selected (each time AdvanceCharacter is ‘clicked’).

Garmin-type GNS knob, Upper Left click spot:

<Area Left="470" Top="307" Width="25" Height="12">

<Cursor Type="Hand" />

<Click Kind="LeftSingle" Repeat="No">

-1 (>C:fs9gps:NameSearchAdvanceCursor)

</Click>

</Area>

 123

Upper Right click spot:

<Area Left="500" Top="307" Width="25" Height="12">

<Cursor Type="Hand" />

<Click Kind="LeftSingle" Repeat="No">

1 (>C:fs9gps:NameSearchAdvanceCursor)

</Click>

</Area>

Lower Left click spot:

<Area Left="480" Top="336" Width="15" Height="12">

<Cursor Type="Hand" />

<Click Kind="LeftSingle" Repeat="Yes">

-1 (>C:fs9gps:NameSearchAdvanceCharacter)

</Click>

</Area>

Lower Right click spot:

<Area Left="500" Top="336" Width="15" Height="12">

<Cursor Type="Hand" />

<Click Kind="LeftSingle" Repeat="Yes">

1 (>C:fs9gps:NameSearchAdvanceCharacter)

</Click>

</Area>

3. XML Script (code) Entry. Code may be used to enter the Name:

'Garde' (>C:fs9gps:NameSearchEnterChar)

returns the ICAO ‘A _ _ _ _ _ _ EDOC’ (Gardelegen Airport, Gardelegen,
Germany). While,

'Garder' (>C:fs9gps:NameSearchEnterChar) , or

'Garderm' (>C:fs9gps:NameSearchEnterChar) , or

'Gardermo' (>C:fs9gps:NameSearchEnterChar) , or

'Gardermoe' (>C:fs9gps:NameSearchEnterChar) , or

'Gardermoen'’ (>C:fs9gps:NameSearchEnterChar)

all return the ICAO ‘A _ _ _ _ _ _ ENGM’ (Gardermoen Airport, Oslo, Norway)

 124

EnterChar and AdvanceCursor/AdvanceCharacter automatically concatenates the
character entry to form CurrentName. Up to 80 characters can be entered into
CurrentName even though Airport Names are not nearly that long. If more than
80 characters are entered, then the previous, the last, entry is replaced.

Cursor Advance Concatenation

Keyboard Direct Entry Automatic Automatic

Mouse Entry by Mouse Automatic

Code Entry Not Necessary Not Necessary

� NameSearchBackupChar (enum) [Set]

NameSearchBackupChar is used for backspace when entering a Name via keyboard
direct entry.

For example, gps_500 lines 3951 – 3955:

<On Key="Backspace">

<Visible> (C:fs9gps:enteringInput) </Visible>

110 119 (C:fs9gps:enteringInput) rng 131

(C:fs9gps:enteringInput) == ||

if{

-1 (>C:fs9gps:NameSearchBackupChar) @InitBlinker qu it

 }

</On>

 Another, simpler example:

<On Key="Backspace">

 <Visible>(L:AlphanumericEntryEnable, bool)</Vis ible>

 (M:Key) (>C:fs9gps:NameSearchBackupChar)

</On>

Neither (M:Key) nor a number actually need to be entered in order to create a
backspace. All of the following create a single backspace at a time as the keyboard
backspace key is entered:

<On Key="Backspace">

 <Visible>(L:AlphanumericEntryEnable, bool)</Vis ible>

 (M:Key) -1 (>C:fs9gps:NameSearchBackupChar)

</On>

 125

<On Key="Backspace">
 <Visible>(L:AlphanumericEntryEnable, bool)</Vis ible>

 (M:Key) 1 (>C:fs9gps:NameSearchBackupChar)

</On>

<On Key="Backspace">

 <Visible>(L:AlphanumericEntryEnable, bool)</Vis ible>

 (M:Key) 0 (>C:fs9gps:NameSearchBackupChar)

</On>

<On Key="Backspace">

 <Visible>(L:AlphanumericEntryEnable, bool)</Vis ible>

 (M:Key) -200 (>C:fs9gps:NameSearchBackupChar)

</On>

<On Key="Backspace">

 <Visible>(L:AlphanumericEntryEnable, bool)</Vis ible>

 (>C:fs9gps:NameSearchBackupChar)

</On>

Note the use of <Visible> tags. In the examples above, only when

L:AlphanumericEntryEnable = 1 will keyboard direct entry for the Name work.

The ability to “turn off” keyboard direct entry is necessary in order to retain normal
FS9/X keyboard entry instructions such as “G” = Landing Gear Toggle when Name entry
is not needed.

� NameSearchCursorPosition (enum) [Get]

NameSearchCursorPosition is the current cursor position of the Name entry. The first
character entered is CursorPosition 0. The second is CursorPosition 1, and so forth.

CursorPosition is active for all types of Name entry – keyboard, mouse, code.

� NameSearchCurrentName (string) [Get, Set]

NameSearchCurrentIdent is the airport Name constructed (concatenated) as the user
enters Name characters. It grows (SLEN increases by one) with each keystroke or
mouse AdvanceCursor entry.

 126

� NameSearchCurrentMatch (enum) [Get]

NameSearchCurrentMatch is the number of ICAOs that were matched to the Airport
Name during the NameSearch. It is always either 0 or 1.

� NameSearchCurrentIcao (string) [Get]

NameSearchCurrentIcao is the ICAO associated with the current Airport Name. As an
Airport Name is being entered via direct keyboard entry or mouse one character at a
time, an Airport Name is progressively ‘concatenated’ and a NameSearch performed as
each new character is entered.

� NameSearchCurrentIcaoType (string) [Get]

NameSearchCurrentIcaoType is always ‘A’, for Airport.

� NameSearchCurrentIcaoRegion (string) [Get]

NameSearchCurrentIcaoRegion is always a blank string because Airport ICAOs do not
contain a Region Code.

 127

Flight Plan Group

The Flight Plan Data Group variables control the navigation engine of the gps. They
cover Flight Planning to En Route Navigation to Instrument Approaches.

In my opinion, the flight navigation capability provided by the Flight Plan Data Group
variables is thorough and pretty impressive, especially considering the inexpensive price
of the software. The Flight Plan Group is by far the largest Group within fs9gps,
containing 99 variables.

I find that understanding and predicting the response of the Flight Plan variables
requires documentation of significant detail, at least for my purposes, which explains the
length of this chapter. Still, there are things not covered and still not understood.

Flight Planning

COMPONENTS OF THE FLIGHT PLAN

The Flight Plan components are a group of read-only variables that are set through use
of FS9’s Flight Planner, mid-flight Flight Plan filing using FS9‘s ATC capability, user
editing of the Flight Plan.PLN file, or through third-party Flight Planners (I’ve never
investigated any, but several are out there that look pretty good).

� FlightPlanTitle (string) [Get]

FlightPlanTitle is created from Departure Airport Ident and Destination airport Ident.
“Departure Airport Ident to Destination Airport Ident”

� FlightPlanDescription (string) [Get]

FlightPlanDescription is created from Departure Airport Ident and Destination airport
Ident. “Departure Airport Ident, Destination Airport Ident”

� FlightPlanFlightPlanType (enum) [Get]

FlightPlanFlightPlanType is a number defining the type of Flight Plan.

0 = NONE

1 = VFR

2 = IFR

 128

� FlightPlanRouteType (enum) [Get]

FlightPlanRouteType is an enum representing basic routing type. See table below.

Route Type # Route Type

0 DIRECT 2 LOWALT

1 VOR 3 HIGHALT

http://msdn.microsoft.com/en-us/library/cc526954.aspx#ATC_RouteType

� FlightPlanCruisingAltitude (feet) [Get]

A general discussion can be found at the end of this section.

� FlightPlanDepartureLatitude
� FlightPlanDepartureLongitude (degrees, radians) [Get]

Latitude and Longitude of the starting position of the aircraft at the departure airport.
This could be parked at a gate or on a runway, each representing different coordinates.
It is fixed at the starting point and does not change as the aircraft taxis for takeoff. If
FS9/X Flight Planner is used to position the aircraft on the Active Runway, then as
shown in the figure below, the aircraft will be placed at a point offset from the end of
the runway 1.64% of runway length (WaypointAirportRunwayLength).

 129

� FlightPlanDepartureAirportIdent (string) [Get]

The 3 to 4 character Ident of the Departure Airport.

� FlightPlanDepartureName (string) [Get]

Name of the Departure Airport.

� FlightPlanDepartureAltitude (feet) [Get]

Altitude (asl) of the departure location, or, starting waypoint of the flight plan.

� FlightPlanDestinationLatitude
� FlightPlanDestinationLongitude (degrees, radians) [Get]

Latitude and Longitude of a point offset from the approach end of the active runway.
The landing (Destination) offset distance is, similarly, 1.64% of runway length. It
appears that for the sake of simplicity in the fs9gps world, the departure and destination
points of the active runway are coincident. This is true even in the case of displaced
thresholds, where in real-world aviation, landing before the threshold is not permitted.

Departure / Destination and
Runway Approach Waypoints
(���) are co-located with
FlightPlanDestinationLatitude
and Longitude at airports
having an Instrument
Approach Procedure.

(Only 100+ runways around
the world were spot checked,
but the offset appears to be a
consistent 1.64% of airport
runway length)

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000 14000 16000

Departure & Destination

Offset Distance =

1.64% Runway Length

Displaced Threshold Runway

Non-Displaced Threshold Runway

Runway Length - WaypointAirportRunwayLength (ft)

O
ff

se
t

fr
o

m
 R

u
n

w
a

y
 E

n
d

 (
ft

)

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000 14000 16000

Departure & Destination

Offset Distance =

1.64% Runway Length

Displaced Threshold Runway

Non-Displaced Threshold Runway

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000 14000 16000

Departure & Destination

Offset Distance =

1.64% Runway Length

Departure & Destination

Offset Distance =

1.64% Runway Length

Displaced Threshold Runway

Non-Displaced Threshold Runway

Displaced Threshold Runway

Non-Displaced Threshold Runway

Displaced Threshold Runway

Non-Displaced Threshold Runway

Runway Length - WaypointAirportRunwayLength (ft)

O
ff

se
t

fr
o

m
 R

u
n

w
a

y
 E

n
d

 (
ft

)

 130

� FlightPlanDestinationAirportIdent (string) [Get]

The 3 to 4 character Destination Airport Ident.

� FlightPlanDestinationName (string) [Get]

Destination airport Name.

� FlightPlanDestinationAltitude (feet) [Get]

Altitude (asl) of the destination point.

The following table compares fs9gps variables to the equivalent entries of the Flight Plan
.PLN file for a flight from Pochentong Airport (Phnom Penh International), Phnom Penh,
Cambodia direct Changi Airport, Singapore.

fs9gps variable FS9 Flight Planner (File.pln)
1 [flightplan]

2 AppVersion=9.1.40901

FlightPlanTitle 3 title=VDPP to WSSS

FlightPlanDescription 4 description=VDPP, WSSS

FlightPlanFlightPlanType 5 type=IFR

FlightPlanRouteType 6 routetype=0

FlightPlanCruisingAltitude 7 cruising_altitude=34000

See id detail below [1] 8 departure_id=VDPP, N11* 32.09', E104* 50.27', +000040.00

9 departure_position=5

See id detail below [2] 10 destination_id=WSSS, N1* 19.75', E103* 59.11', +000021.99

FlightPlanDepartureName 11 departure_name=Pochentong Intl

FlightPlanDestinationName 12 destination_name=Changi

FlightPlanWaypoint Info 13 waypoint.0=, VDPP, , VDPP, A, N11* 32.09', E104* 50.27', +000040.00,

FlightPlanWaypoint Info 14 waypoint.1=, WSSS, , WSSS, A, N1* 19.75', E103* 59.11', +000021.99,

[1] departure_id=VDPP, N11* 32.09', E104* 50.27', +000040.00

FlightPlanDepartureAirportIdent VDPP

FlightPlanDepartureLatitude N11* 32.09'

FlightPlanDepartureLongitude E104* 50.27'

FlightPlanDepartureAltitude +000040.00

[2] destination_id=WSSS, N1* 19.75', E103* 59.11', +000021.99

FlightPlanDestinationAirportIdent WSSS

FlightPlanDestinationLatitude N1* 19.75'

FlightPlanDestinationLongitude E103* 59.11'

FlightPlanDestinationAltitude +000021.99

 131

� FlightPlanAlternateAirportIdent (string) [Get]

� FlightPlanAlternateLatitude (degrees) [Get]

� FlightPlanAlternateLongitude (degrees) [Get]

� FlightPlanAlternateAltitude (feet) [Get]

� FlightPlanAlternateName (string) [Get]

With the FlightPlanAlternate variables, an alternate airport or waypoint destination can
be identified in the Flight Plan file. FS9 Flight Planner lacks the capability to create the
Alternate, and the fs9gps FlightPlanAlternate variables are Get only, so the user must
hand edit the .PLN file or use a third-party Flight Planner (if one that does this exists, I
don’t know) to define the Alternate using these variables.

I’ve edited lines 13 and 14 to the .PLN file to add an Alternate Airport. For Changi, it is
Hang Nadim Airport (Ident = WIKB), Batam, Indonesia, as shown below. I must obtain
the airport Ident, Latitude, Longitude, Altitude and Name independently beforehand,
and add it to the .PLN file.

fs9gps variable FS9 Flight Planner (File.pln)
1 [flightplan]

2 AppVersion=9.1.40901

FlightPlanTitle 3 title=VDPP to WSSS

FlightPlanDescription 4 description=VDPP, WSSS

FlightPlanFlightPlanType 5 type=IFR

FlightPlanRouteType 6 routetype=0

FlightPlanCruisingAltitude 7 cruising_altitude=34000

8 departure_id=VDPP, N11* 32.09', E104* 50.27', +000040.00

9 departure_position=5

10 destination_id=WSSS, N1* 19.75', E103* 59.11', +000021.99

FlightPlanDepartureName 11 departure_name=Pochentong Intl

FlightPlanDestinationName 12 destination_name=Changi

See id detail below [3] 13 alternate_id=WIKB, N1* 07.13', E104* 06.85', +000126.99

FlightPlanAlternateName 14 alternate_name=Hang Nadim

FlightPlanWaypoint Info 15 waypoint.0=, VDPP, , VDPP, A, N11* 32.09', E104* 50.27', +000040.00,

FlightPlanWaypoint Info 16 waypoint.1=, WSSS, , WSSS, A, N1* 19.75', E103* 59.11', +000021.99,

[3] alternate_id=WIKB, N1* 07.13', E104* 06.85', +000126.99

FlightPlanAlternateAirportIdent WIKB

FlightPlanAlternateLatitude N1* 07.13'

FlightPlanAlternateLongitude E104* 06.85'

FlightPlanAlternateAltitude +000126.99

After lines 13 and 14 are added to the Flight Plan .pln file, then the FlightPlanAlternate
variables are populated, but it requires editing the .pln file because FlightPlanAlternate
variables are Get only.

 132

If desired, an Airport ICAO can be constructed from the AlternateAirportIdent as follows:

' A_ _ _ _ _ _'

(C:fs9gps:FlightPlanAlternateAirportIdent) scat

The first line is an A followed by 6 spaces. The xml above yields ' A WIKB' ,

which is the full ICAO for Hang Nadim Airport. Once made into an ICAO, it can then be
used to specify a new approach Airport, for example. In a similar manner,
FlightPlanAlternateLatitude and Longitude could be used to specify a new Waypoint that
could be added to the Flight Plan.

However, when coding a gps or flight management computer from scratch, it may be
easier and more realistic to enter the alternate destination (doesn’t have to be an Airport
– it could be a Transition Waypoint) Ident while the simulator running, storing the Ident
as chr >L:Vars or XMLVars for later use if needed.

FlightPlanCruisingAltitude DISCUSSION

FlightPlanCruisingAltitude is read only and a separate flight planning application such as
the stock FS9 Flight Planner is needed if the user wants a cruising altitude to be
computed automatically. Charts and manual entry within FS9 Flight Planner works as
well, of course.

Given user inputs of 1) departure airport, 2) destination airport, 3) route type (Direct-
GPS, Low Altitude Airways, High Altitude Airways, or VOR to VOR), and 4) flight plan
type (VFR or IFR), FS9’s Flight Planner determines a flight plan route and then computes
a single cruising altitude. The associated gps variables, DepartureAirportIdent,
DestinationAirportIdent, RouteType, and FlightPlanType are also read-only.

A detailed discussion of FS9 Flight Planner is beyond the scope of this GPS Guidebook.
I’m not certain of the rules that determine exactly how Flight Planner computes Cruising
Altitude, however, here are a few Flight Planner notes based on limited observations:

• U.S. F.A.R. Part 91 Cruising
Altitude rules are applied world-
wide. Above 18,000 feet altitude
where, in U.S.A. airspace, flight
is governed by Instrument Flight
Rules, FS9 Flight Planner still
adds 500 feet to the cruising
altitude of a flight that is set up
as a VFR flight.

• FS9 Flight Planner ‘scans’ at least a coarse terrain grid along its computed flight

route and then provides an amount of clearance above the maximum ground
elevation in the calculation of Cruising Altitude.

 133

• Ground clearance rules appear to vary geographically. Ground clearance in the

USA seems to be 3000 to 4000 feet above highest ground elevation. Flying from
France to Italy over the Alps, 7000 feet. Italy to Austria, 4000 feet. Thailand,
3000 feet. And so on. I have not figured out how to predict the value.

• Cruising Altitude often exceeds even the maximum airway segment MEA for

flight routes along low altitude Airways.

• FS9 Flight Planner calculates Cruising Altitude once the “Find Route” button is

clicked. Subsequent changes to the flight route by adding or deleting waypoints
will not automatically re-compute the Cruising Altitude, even if it should.

• Restricted Airspace sometimes influences FS9 Flight Planner’s Cruising Altitude.

The effect seems to be inconsistent, however, so again, I am not sure.

• Flight Planner calculates GPS-Direct routes along Great Circle paths.

In summary, I am guessing as to FS9 Flight Planner’s rules for computing
CruisingAltitude. However, after consulting your charts, FlightPlanCruisingAltitude is
manually settable from within FS9 Flight Planner and can be changed during flight by
request to ATC.

 134

� FlightPlanIsActiveFlightPlan (bool) [Get]

FlightPlanIsActiveFlightPlan =1 means a flight plan is loaded.

� FlightPlanIsLoadedApproach (bool) [Get]

FlightPlanIsLoadedApproach - an approach is loaded (flight plan may/may not be
loaded)

� FlightPlanIsActiveApproach (bool) [Get, Set]

FlightPlanIsActiveApproach is used to activate a loaded approach. The xml:

1 (>C:fs9gps:FlightPlanIsActiveApproach)

It requires an argument. 1 for activate, as above. 0 means approach is loaded, but not
activated.

� FlightPlanIsActiveWaypoint (bool) [Get, Set]

FlightPlanIsActiveWaypoint is a bool representing whether or not any Waypoint in the
Flight Plan is active. At the departure airport and en route, one waypoint is always
active. The status changes upon reaching the destination waypoint, however, at which
point FlightPlanIsActiveWaypoint becomes 0.

FlightPlanIsActiveWaypoint is 1 as long as there is a Flight Plan or Approach waypoint
that is active.

FlightPlanIsActiveWaypoint appears to be read-only, contrary to the SDK description.

� FlightPlanIsDirectTo (bool) [Get, Set]

FlightPlanIsDirectTo is a bool representing Direct To status. 1 = Flight Plan is Direct To.
0 = Not Direct To.

FlightPlanIsDirectTo appears to be read-only, contrary to the SDK description.

� FlightPlanDirectToWaypoint (enum) [Get]

DirectToWaypoint is the Flight Plan Waypoint Index that the Direct To points to.
Because a DirectTo Flight Plan is (apparently) always a two-waypoint Flight Plan, then
the only logical DirectToWaypoint value is 1. Indeed, DirectToWaypoint is always 1
when the Flight Plan is DirectTo, or -1 when it is not.

 135

� FlightPlanActiveWaypoint (enum) [Get, Set]

FlightPlanActiveWaypoint is the Index number of the waypoint that the aircraft is
currently flying directly toward or on an intercept course toward; it’s the next waypoint.
The active Flight Plan leg is the flight path from the previous waypoint to the active
Waypoint.

In the stock gps_500 gauge, the Ident of the ActiveWaypoint, if an Ident exists, is
displayed in magenta text and the line color of the active Flight Plan leg is also magenta.
In the FS9 Map, the line color of the active Flight Plan leg is magenta.

FlightPlanActiveWaypoint is read and write capable, contrary to the SDK description.

� FlightPlanActiveApproachWaypoint (enum) [Get]

FlightPlanActiveApproachWaypoint is the index number of the active (current) approach
segment. ApproachWaypoint does not change when a sub-segment changes – only
when the segment changes.

� FlightPlanIsActiveWaypointLocked (bool) [Get, Set]

When set to 1, FlightPlanIsActiveWaypointLocked locks the ActiveWaypoint’s Index
number so that it cannot advance by 1 when the aircraft reaches the Active Waypoint.
This has significant consequences – it effectively terminates the Flight Plan at the
ActiveWaypoint until and unless ActiveWaypointLocked is set to zero.

If the aircraft is being controlled by a typical autopilot, it will turn 360° upon reaching
the locked Waypoint, circling around to repeatedly cross it. The same occurs when an
aircraft reaches the destination point of a Flight Plan but does not land (I am referring to
Flight Plan – not an Approach with a Missed Approach Procedure).

FlightPlanIsActiveWaypointLocked can be set to one or zero at any point in time, locking
the ActiveWaypoint or unlocking it and allowing the Flight Plan to continue as normal.
When a Flight Plan is opened, FlightPlanIsActiveWaypointLocked is set to zero. Perhaps
it is possible outside of xml to create a flight pan with a locked ActiveWaypoint, but I
don’t know what purpose that would serve.

Note: When adding or deleting Waypoints beyond the ActiveWaypoint, fs9gps sets
ActiveWaypointLocked to 1, so you may want to subsequently reset it to zero unless you
want the Flight Plan to terminate at the ActiveWaypoint.

An example of the use and effects of FlightPlanIsActiveWaypointLocked is given in
Example 3 of this section.

 136

� FlightPlanWaypointsNumber (enum) [Get]

FlightPlanWaypointsNumber is the total number of waypoints in the flight plan. The
Departure airport is always the first waypoint and has Index = 0. The total number of
flight plan legs is FlightPlanWaypointsNumber minus 1.

NEWWAYPOINT GROUP: CREATING AND EDITING A FLIGHT PLAN

CREATING A FLIGHT PLAN WITH XML

Flight Plans, SIDS and STARS can be created and edited using fs9gps variables, and
with the help of the LOGGER module, saved to and read from hard drive. LOGGER is
available for download free of charge from

http://robbiemcelrath.com/blackbox/?logger.

The LOGGER module is also included as a class in Tom Aguilo’s XMLTools XML
expansion module. XMLTools can be freely downloaded from

http://fsdeveloper.com/forum/resources/xmltools-2-0-xml-expansion-module-for-fsx.148/

and is highly recommended for all serious XML gauge programmers.

FlightPlanDirectToDestination is used to create a new Flight Plan when one is not
currently loaded. Use of the FlightPlanDirectToDestination variable is reviewed later in
this section.

EDITING A FLIGHT PLAN

The NewWaypoint variables are a small group of Set-only variables that can be used to
edit flight plans by adding or deleting en route or alternate destination waypoints, one
waypoint at a time.

Adding a new waypoint to an active flight plan is a two step process that involves
defining the latitude and longitude of the new waypoint to be added, followed by
assigning the waypoint index of the new waypoint (where the new en route waypoint
will be inserted in the Flight Plan).

Restating this, the required information for a new en route waypoint is:

1. Latitude and Longitude

2. New Waypoint Index position

A valid en route waypoint can be just a point on the map, not associated with an
existing navaid or fs9gps waypoint. Fs9gps will assign WaypointType = 5 (User) to any
waypoint added using AddWaypoint that is not an existing navaid or published waypoint.

 137

ENTERING NEW WAYPOINT LATITUDE AND LONGITUDE

There are a few approaches to this:

1. Enter the new waypoint lat and lon directly (necessary for user-defined
waypoints)

2. Enter the new waypoint ICAO, from which lat and lon will automatically be
accessed by fs9gps

a. Enter the 12 character ICAO directly (usually not very realistic).

b. Enter the new waypoint facility (airport, navaid or intersection) Ident
followed by an ICAO search that determines the unique ICAO, from which
lat and lon will be automatically accessed.

c. For airport waypoints, enter the airport Name followed by Name Search
which can be used to find the airport ICAO.

� FlightPlanNewWaypointLatitude
� FlightPlanNewWaypointLongitude (degrees) [Set]

Latitude and Longitude of the waypoint to be added. Either NewWaypointLatitude and
Longitude, or NewWaypointICAO must be entered before AddWaypoint is executed.

51.3278 (>C:fs9gps:FlightPlanNewWaypointLatitude, d egrees)

 7.1770 (>C:fs9gps:FlightPlanNewWaypointLongitude, degrees)

or

'VED BAM' (>C:fs9gps:FlightPlanNewWaypointICAO)

Both will define a new en route waypoint at the same location. Entering Latitude and
Longitude will create a new Type 5 User waypoint that will not have an associated ICAO.
Entering the ICAO VED_ _ _ _BAM will create a new Type 3 VOR waypoint.

� FlightPlanNewWaypointICAO (string) [Set]

FlightPlanNewWaypointICAO can be entered instead of Latitude and Longitude. From
the ICAO, fs9gps will automatically access the Ident, Waypoint Type, Latitude and
Longitude of the new waypoint. Waypoint Altitude will not be returned because, at least
in FS9, you must enter the related facility Group to access altitude.

 138

� FlightPlanNewWaypointIdent (string) [Set]

Asking the user to enter the 12 character ICAO isn’t a completely realistic sim
experience. Instead, entering the Ident of a navaid, intersection, or airport is a more
real-world procedure. The ultimate objective is still to define the Lat and Lon of the new
waypoint.

Because Idents other than airports are not always unique, using NewWaypointIdent will
require an ICAO Search to isolate the correct ICAO from which Lat and Lon will be
accessed.

The ICAO Search process is more straight-forward than it may sound and is discussed in
the ICAO Search chapter. If the search goal is to display the list of ICAOs containing the
specified Ident that the user can select from, then the ICAOSearch code will be quite
simple.

Once ICAO Search is complete and the desired ICAO selected, then all that remains is to
transfer the ICAOSearchCurrentIcao to FlightPlanNewWaypointIcao:

(@c:IcaoSearchCurrentIcao) (>@c:FlightPlanNewWaypoi ntIcao)

A more complete xml example is included in the ICAO Search Data Group chapter.

FlightPlanWaypointIdent can accommodate a string length up to 10. Although Idents
with slen greater than 5 do not exist in the fs9gps database, it is possible to create a
Type 5 User Waypoint and assign an Ident name up to 10 characters long by through
use of FlightPlanNewWaypointIdent, for example:

'ABC1234567' (>@c:FlightPlanNewWaypointIdent)

A User defined Ident such as this will not permanently update the fs9gps database nor is
it searchable by ICAO Search.

 139

ASSIGNING A WAYPOINT INDEX AND ADDING THE NEW WAYPOINT

� FlightPlanAddWaypoint (enum) [Set]

FlightPlanAddWaypoint is used to add a single, additional waypoint to a loaded flight
plan, one added waypoint at a time. It requires an argument (index pointer) to indicate
where in the Flight Plan the new waypoint will be inserted.

2 (>C:fs9gps:FlightPlanAddWaypoint)

will add a new waypoint at WaypointIndex 2 with whatever Lat and Lon had previously
been specified using NewWaypointLatitude and Longitude, or NewWaypointICAO. The
waypoint previously at WaypointIndex 2 is advanced to become WaypointIndex 3. 3
becomes 4, and so forth. New waypoints can only be added/deleted to Flight Plans, not
to Approaches.

� FlightPlanDeleteWaypoint (enum) [Set]

FlightPlanDeleteWaypoint is used to delete a single waypoint from a loaded flight plan.
One waypoint delete at a time. It requires an argument (index pointer) to indicate
which waypoint is to be deleted.

 140

Example 1: FlightPlanAddWaypoint and FlightPlanDeleteWaypoint

FlightPlanAddWaypoint and FlightPlanDeleteWaypoint are demonstrated in the following
examples:

EDLW

EDLE

BAM

Lat 51.5388°
Lon 7.3170°

EDLW

EDLE

BAM

Lat 51.5388°
Lon 7.3170°

EDLW

EDLE

BAM

Original Flight Plan Added New Waypoints
Index 1 and 2

Deleted Waypoint
Index 2WaypointIndex 0 WaypointIndex 0WaypointIndex 0

WaypointIndex 1 WaypointIndex 1

A B CWaypointIndex 1 WaypointIndex 3

WaypointIndex 2

WaypointIndex 2

Map A shows a Direct To routing from Dortmund Airport, Dortmund Germany to Essen-
Mülheim Airport, Essen/Mülheim Germany. The table below lists FlightPlanWaypoint
variables:

Next, two new waypoints are added using NewWaypoint variables. The xml:

<!- - The first new Waypoint - - >

'VED BAM' (>C:fs9gps:FlightPlanNewWaypointICAO)

1 (>C:fs9gps:FlightPlanAddWaypoint)

<!- - The second new Waypoint - - >

51.5388 (>C:fs9gps:FlightPlanNewWaypointLatitude, d egrees)

7.3170 (>C:fs9gps:FlightPlanNewWaypointLongitude, d egrees)

1 (>C:fs9gps:FlightPlanAddWaypoint)

 141

The new routing is shown in Map B, and the new FlightPlanWaypoint variable list is
shown below. The red outline highlights the new waypoints. Note that the User-
defined waypoint, WaypointIndex 1 (just a lat, lon position and not an existing fs9gps
facility), does not have an ICAO. Note also that both new waypoints are added using
the same argument (i.e., 1) for FlightPlanAddWaypoint. When the second waypoint is
added also as Waypoint 1, the previously existing Waypoint 1 is automatically advanced
to become Waypoint 2. 2 becomes 3, and so forth.

Upon executing AddWaypoint, fs9gps automatically updates waypoint index, magnetic
heading, distances, ETEs, ETAs and fuel variables for all affected waypoints.

Finally, WaypointIndex 2 (BAM VOR-DME) is deleted using FlightPlanDeleteWaypoint.
The xml:

2 (>C:fs9gps:FlightPlanDeleteWaypoint)

The new routing is shown in Map C, and the final FlightPlanWaypoint variable list is
shown below:

� FlightPlanDirectToDestination (bool) [Set]

FlightPlanDirectToDestination will create a new, two-waypoint Flight Plan originating at
the aircraft’s current x,y,z position and culminating at the latitude and longitude defined
by FlightPlanNewWaypointLatitude and Longitude, or FlightPlanNewWaypointICAO.

If no Flight Plan is currently loaded, FlightPlanDirectToDestination will create a new two-
waypoint Flight Plan. If a Flight Plan is currently active, FlightPlanDirectToDestination
will replace the entire Flight Plan with the new two-waypoint one.
The current aircraft location will become WaypointIndex 0. FlightPlanWaypointAltitude
will be set to the current aircraft altitude and FlightPlanWaypointType will be 5 (User).
No ICAO will be associated with this waypoint.

 142

The Direct To location can be any latitude and longitude; it does not have to be an
fs9gps navaid facility or intersection, nor a waypoint currently in the Flight Plan.
However, FlightPlanNewWaypointLatitude and FlightPlanNewWaypointLongitude, or
FlightPlanNewWaypointICAO must be defined immediately preceding the
FlightPlanDirectToDestination statement as follows.

• Direct To a custom, user-defined lat and lon:

37.8487 (>C:fs9gps:FlightPlanNewWaypointLatitude, d egrees)

-97.8157 (>C:fs9gps:FlightPlanNewWaypointLongitude, degrees)

(>C:fs9gps:FlightPlanDirectToDestination)

L:Vars could be substituted for the numbers, of course:

(L:DTO_Lat, degrees) (>@c:FlightPlanNewWaypointLati tude, degrees)

FlightPlanDirectToDestination does not require an argument.

• Direct To a Waypoint in the Flight Plan:

(L:DTOWaypointIndex, enum) (>@c:FlightPlanWaypointI ndex)

(@c:FlightPlanWaypointICAO) (>@c:FlightPlanNewWaypo intICAO)

(>@c:FlightPlanDirectToDestination)

In the example above, L:DTOWaypointIndex is a user-specified Flight Plan

waypoint index number. It is entered into WaypointIndex from which WaypointICAO is
determined. From there, the ICAO transfer into NewWaypointICAO will provide the
latitude and longitude the DirectToDestination statement needs.

Note that this approach requires that the waypoint have an ICAO. All fs9gps facilities
(airports, navaids, waypoints/intersections) have a unique ICAO, but if the flight plan
contains a custom, user-defined waypoint, that waypoint will not have an ICAO.

• Direct To any fs9gps Facility:

This approach requires that the facility ICAO be determined as the first step. Any
source of the ICAO will do:

• ICAOSearchCurrentICAO

• NameSearchCurrentICAO

• Waypoint or Facility Group ICAOs such as WaypointAirportICAO

• Nearest Group ICAOs such as NearestVorCurrentICAO

 143

This is followed by the ICAO transfer into NewWaypointICAO and, finally, the
DirectToDestination statement:

(@c:NearestVorCurrentICAO) (>@c:FlightPlanNewWaypoi ntICAO)

(>@c:FlightPlanDirectToDestination)

CAUTION: When Flight Simulator’s Flight Planner creates a Flight Plan, Flight Plan
string variables FlightPlanTitle, Description, DepartureAirportIdent,
DepartureAirportName, DestinationAirportIdent and DestinationAirportName are filled in.
However, FlightPlanDirectToDestination creates a Flight Plan in which Flight Plan string
variables other than FlightPlanTitle are blank. A word of caution here - string
operations such as SLEN on a blank string creates an error that will cause Flight
Simulator to crash to desktop. Arguably, it may be a bug in Flight Simulator that such
an error causes the simulation to crash.

As an example, the following operations will cause the sim to crash if they are
preceeded by execution of FlightPlanDirectToDestination:

• ((C:fs9gps:FlightPlanDescription) slen)

• ((C:fs9gps:FlightPlanDepartureAirportIdent) slen)

• ((C:fs9gps:FlightPlanDepartureName) slen)

• ((C:fs9gps:FlightPlanDestinationAirportIdent) slen)

• ((C:fs9gps:FlightPlanDestinationName) slen)

However, use of those variables without slen will just return an empty string without
causing a crash.

Other operations may also cause the simulation to crash or hang. Suffice it to say that I
have found that a simulation crash can occur following FlightPlanDirectToDestination, so
be on the alert, especially when including FlightPlan string variables in your code.

� FlightPlanCancelDirectTo (bool) [Set]

FlightPlanCancelDirectTo restores the Flight Plan to the state prior to execution of
FlightPlanDirectToDestination. However, if the Flight Plan is changed (AddWaypoint or
DeleteWaypoint) after DirectToDestination is executed, then FlightPlanCancelDirectTo
will no longer be able to restore the Flight Plan to the prior state.

The xml:

(>C:fs9gps:FlightPlanCancelDirectTo)

FlightPlanCancelDirectTo does not require an argument.

 144

Example 2: FlightPlanDirectToDestination and CancelDirectTo

The following example demonstrates FlightPlanDirectToDestination and CancelDirectTo:

En Route to
Waypoint 1 EDLW

Lat 51.5388°
Lon 7.3170°

WaypointIndex 0

WaypointIndex 1

WaypointIndex 3

EDLW

BAM

Lat 51.5388°
Lon 7.3170°

WaypointIndex 1

“Direct To”
Waypoint 2

Initiated

BA

WaypointIndex 2
BAM

WaypointIndex 0

EDLE EDLE

Map A shows flight progress as the aircraft is en route to waypoint 1. The aircraft
position is indicated with the orange colored + symbol. The table below lists the
FlightPlanWaypoint variables.

Map B shows the Flight Plan immediately after a DirectToDestination Waypoint 2 is
initiated.

The xml:

(L:DTOWaypointIndex, enum) (>@c:FlightPlanWaypointI ndex)

(@c:FlightPlanWaypointICAO) (>@c:FlightPlanNewWaypo intICAO)

(>@c:FlightPlanDirectToDestination)

where the user has entered 2 for L:DTOWaypointIndex . The table below lists the

FlightPlanWaypoint variables. Note that the present aircraft position becomes the new

 145

Waypoint 0, the aircraft’s current altitude (2964’) becomes WaypointAltitude for Index 0,
and the WaypointType is 5 (User). The DirectTo Waypoint (original Waypoint 2, BAM
VOR-DME) is now WaypointIndex 1, and WaypointMagneticHeading and Distance
variables are adjusted. FlightPlanTitle is also updated to reflect the DTO.

Map C shows progress of the flight en route to the Direct To waypoint. At this point, a
CancelDirectTo is intitated. The xml:

(>@c:FlightPlanCancelDirectTo)

Map D reflects the Flight Plan immediately after CancelDirectTo, and the table below
lists the FlightPlanWaypoint variables. Note that the original Flight Plan is restored and
that distance and fuel variables associated with ActiveWaypoint 2 are updated. The
ActiveWaypoint is now 2, and, if on autopilot, the aircraft will begin a right turn to
intercept the Waypoint 1 to Waypoint 2 leg.

EDLW

EDLE

BAM

Lat 51.5388°
Lon 7.3170°

En Route to
“Direct To”
Waypoint

EDLW

EDLE

BAM

Lat 51.5388°
Lon 7.3170°

WaypointIndex 0

WaypointIndex 1

WaypointIndex 2

“Direct To”
Canceled

DC

WaypointIndex 0

WaypointIndex 3

WaypointIndex 1

 146

Example 3: ActiveWaypointLocked, AddWaypoint and ActiveWaypoint

B

WaypointIndex 0

WaypointIndex 1

WaypointIndex 2

WaypointIndex 3

Lat -32.9588°
Lon -70.5873°

C

WaypointIndex 0

WaypointIndex 1

WaypointIndex 2

WaypointIndex 3A

WaypointIndex 0

WaypointIndex 1

WaypointIndex 2Victor Lafon
San Felipe,
Chile (SCSF)

Benitez Intl.
Santiago,
Chile (SCEL)

Lat -32.9588°
Lon -70.5873°

ActiveWaypointLocked = 0 ActiveWaypointLocked = 1 ActiveWaypointLocked = 1

This example begins with a Flight Plan from Arturo Merino Benitez Intl. Airport (SCEL),
Santiago, Chile, to Victor Lafon Airport (SCSF), San Felipe, Chile. It includes
WaypointIndex 1, SANOK Intersection. The Flight Plan map is shown in Figure A,
above, and the table below lists some of the Flight Plan variables. Note that
ActiveWaypoint is 1 and ActiveWaypointLocked is 0. The Flight Plan was created in
FS9’s Flight Planner.

Figure B shows the results of adding a user-defined waypoint as new WaypointIndex 2
at Latitude S32° 57.53’, Longitude W70° 35.238’. The xml:

-32.95883 (>C:fs9gps:FlightPlanNewWaypointLatitude, degrees)

-70.58733 (>C:fs9gps:FlightPlanNewWaypointLongitude , degrees)

2 (>C:fs9gps:FlightPlanAddWaypoint)

In FS9, executing AddWaypoint simultaneously locks the active waypoint causing
ActiveWaypointLocked to return 1. In FSX, on the other hand, AddWaypoint does not
lock the active waypoint.

 147

The destination waypoint, SCSF, which had been WaypointIndex 2 has been
automatically advanced to become WaypointIndex 3 and the associated distances and
time have been adjusted to accommodate the new waypoint.

Figure C shows the flight at Waypoint 1. Because ActiveWaypointLocked is 1 (FS9), the
active waypoint is locked and does not advance to the next Index number. The result is
that the aircraft, controlled by an autopilot, keeps turning 360° to repeatedly intercept
Waypoint 1.

D E F

WaypointIndex 0

WaypointIndex 1

WaypointIndex 2

WaypointIndex 3

WaypointIndex 0

WaypointIndex 1

WaypointIndex 2

WaypointIndex 3

WaypointIndex 0

WaypointIndex 1

WaypointIndex 2

WaypointIndex 3

Lat -32.9588°
Lon -70.5873°

Lat -32.9588°
Lon -70.5873°

Lat -32.9588°
Lon -70.5873°

Mid-way through the second 360° turn, ActiveWaypointLocked is reset to zero:

0 (>C:fs9gps:FlightPlanIsActiveWaypointLocked)

and as shown in Figure D, ActiveWaypoint advances to WaypointIndex 2, and the
aircraft turns to intercept the flight leg to Waypoint 2.

 148

At about the half way point to Waypoint 2 (Figure E), the ActiveWaypoint is changed to
3 by user input:

3 (>C:fs9gps:FlightPlanActiveWaypoint)

The aircraft now turns to intercept the flight leg from Waypoint 2 to Waypoint 3,
bypassing Waypoint 2. The Flight Plan remains unchanged as shown in the table below.
ActiveWaypointLocked remains 0.

Finally, the aircraft reaches the destination waypoint but does not land (Figure F). At
this point, under autopilot control, it begins repetitive 360° turns to intercept Waypoint 3
because there is no further waypoint to fly to. As shown in the table below,
ActiveWaypoint remains 3, ActiveWaypointLocked remains 0, but now,
FlightPlanIsActiveWaypoint has changed from 1 to 0 indicating that there is no longer an
active waypoint.

 149

Example 4: Changing the Active Waypoint

WaypointIndex 0 WaypointIndex 0 WaypointIndex 0

WptIdx 1WptIdx 2

WptIdx 3 WptIdx 3

WptIdx 2

WptIdx 1WptIdx 1

I I I I I I

WaypointIndex 0

I VWptIdx 2

WptIdx 1WptIdx 1

ActiveWaypoint can be changed different ways. The examples above demonstrate a
Flight Plan from Waypoint 0 to 1 to 2 to 3 (Figure I). The aircraft position is Waypoint 0
and the flight path is shown in a red dashed line. The ActiveWaypoint is identified by a
magenta flight leg and text color.

In Figure II, the Flight Plan has been edited to make Waypoint 2 the ActiveWaypoint:

2 (>@c:FlightPlanActiveWaypoint)

On autopilot, this will cause the aircraft to intercept the Waypoint 2 leg, by-passing
Waypoint 1. Upon reaching Waypoint 2, the aircraft will proceed to the destination
point, Waypoint 3, as usual. The Flight Plan is un-altered.

In Figure III, the Flight Plan is changed to make Waypoint 2 the DirectTo destination:

2 (>@c:FlightPlanWaypointIndex)

(@c:FlightPlanWaypointICAO) (>@c:FlightPlanNewWaypo intICAO)

(>@c:FlightPlanDirectToDestination)

The aircraft will proceed directly to original Waypoint 2 which is now Waypoint 1.
DirectToDestination always creates a two waypoint Flight Plan with the aircraft position
as Waypoint 0 and the destination point (termination of the Flight Plan) as Waypoint 1.

Another alternative would be to delete Waypoint 1, as in Figure IV:

1 (>@c:FlightPlanWaypointIndex)

(@c:FlightPlanWaypointICAO) (>@c:FlightPlanNewWaypo intICAO)

(>@c: FlightPlanDeleteWaypoint)

When Waypoint 1 is deleted, then previous Waypoint 2 becomes the new Waypoint 1,
and so forth.

 150

NEWAPPROACH GROUP: ADDING OR CHANGING AN APPROACH

The NewApproach group is a small group of Set-only variables that can be used to add
or change Instrument Approaches and Transitions.

The following information is needed:

• The destination airport. Specifically, the ICAO (not Ident) of the destination
airport must be known.

• The desired approach and transition index. Every airport having an Instrument
Approach Procedure has an indexed approach list containing at least one
approach. The index pointer of the desired approach is the required information.
Similarly, the index pointer of the desired approach transition is also required. If
omitted, the default index value of zero will be assumed for each.

� FlightPlanNewApproachAirport (string) [Set]

FlightPlanNewApproachAirport is the full ICAO of the destination airport for the approach
you wish to add or change. The airport can be the same one currently in the Flight Plan
or a different one. Any source of the ICAO will do:

• ICAOSearchCurrentICAO

• NameSearchCurrentICAO

• Waypoint or Facility Group ICAOs such as WaypointAirportICAO

• Nearest Group ICAOs such as NearestVorCurrentICAO

An example xml statement:

(@c:IcaoSearchCurrentICAO) (>@c:FlightPlanNewApproa chAirport)

� FlightPlanNewApproachApproach (enum) [Set]

FlightPlanNewApproachApproach is the index pointer to the approach you want to add
or change. The list of instrument approaches is found in the WaypointAirport Group and
can be viewed by looping through WaypointAirportCurrentApproach.

� FlightPlanNewApproachTransition (enum) [Set]

FlightPlanNewApproachTransition is the index pointer to the desired transition
associated with the desired approach. The list of instrument approach transitions is
found in the WaypointAirport Group and can be viewed by looping through
WaypointAirportApproachCurrentTransition.

 151

� FlightPlanNewApproachMissed (bool) [Set]

FlightPlanNewApproachMissed is used to include or exclude the Missed Approach
Procedure in the Approach to be added / edited.

0 The Missed Approach Procedure will be excluded from the new
Approach Procedure. In this situation, if the aircraft does not land at the
NewApproachAirport, then (if most common autopilots are controlling the
aircraft) it will proceed to the destination waypoint indicated in the Flight
Plan. After crossing the destination waypoint, the aircraft will fly a 360°
turn to re-intercept the waypoint and will continue to repeat the 360°
turn.

1 The Missed Approach Procedure will be included in the new Approach
Procedure. FlightPlanNewApproachMissed is a Boolean, so any number
other than zero will include the Missed Approach Procedure.

If omitted, the default value of 1, include Missed Approach Procedure, will be assumed
by fs9gps.

� FlightPlanNewApproachAddInitialLeg (enum) [Set]

FlightPlanNewApproachAddInitialLeg is used to add an initial approach segment. It
facilitates routing the aircraft to the Approach Transition Waypoint. The additional
segment starts at either the current aircraft location or the Termination Point of the
Flight Plan, and extends to the Transition Waypoint of the Approach. The arguments
are:

0 No initial approach segment will be added.

1 An initial segment from the aircraft location to the Transition Waypoint
will be added when the approach is loaded.

2 An initial segment from the Termination Point of the Flight Plan to the
Transition Waypoint will be added when the approach is loaded.

3 An initial segment from the aircraft location to the Transition Waypoint
will be added when the approach is activated.

4 An initial segment from the Termination Point of the Flight Plan to the
Transition Waypoint will be added when the Approach is activated.

5+ Same as 0

For all cases, the FlightPlanWaypointApproach list will not contain the new leg as a
separate entry, but distances of the first approach leg are adjusted to account for the
added initial leg (FlightPlanApproachSegmentLength and Distance,
ApproachRemainingTotalDistance).

 152

Note that the Microsoft ESP web page

http://msdn.microsoft.com/en-us/library/cc526954.aspx#FlightPlanData

lists AddInitialLeg units as Unavailable, which might be interpreted to suggest that this
variable is inactive. It works fine, however, at least in FS9.

� FlightPlanLoadApproach (enum) [Set]

FlightPlanLoadApproach Loads, or Loads and Activates the desired new approach and
transition, or Loads and Activates a Vectors-To-Final transition for the current approach
depending on the argument used:

0 or negative = No action

1 Load. The NewApproachAirport, NewApproachApproach,
NewApproachTransition, NewApproachMissed and
NewApproachAddInitialLeg variables are Loaded but not Activated.

2 Load and Activate. The NewApproachAirport, NewApproachApproach,
NewApproachTransition, NewApproachMissed and
NewApproachAddInitialLeg variables are Loaded and Activated.

3 Vectors-To-Final. LoadApproach 3 operates on the existing loaded or
activated approach. It will load and activate a Vectors-To-Final transition
for the currently loaded / activated approach, replacing the existing
transition. The new FlightPlanWaypointApproachIndex 0 becomes an
extended Final Approach Fix. fs9gps adds 5.00 NMiles to the Final
Approach Fix with the same bearing as the Final Approach segment to
accommodate the distance that may be required to turn to the Final
Approach heading after intercepting the “Vectors-To-Final Fix”. You must
provide an initial leg or the aircraft will fly to the FAF, not the extended
FAF. See the example at the end of this section for further explanation.

If the intention is to load or activate a new approach with a Vectors
transition, then the proper choice is to select the new
NewApproachAirport and NewApproachApproach, and then
NewApproachTransition = 0 (0 is always the Vectors transition Index),
followed by NewApproachMissed = 0 or 1, NewApproachAddInitialLeg =
1 or 2, and finally, LoadApproach = 1, 2, or 3.

4+ Same as 2

 153

Example 5: Adding or Changing an Approach

Example 5 demonstrates use of the NewApproach Group variables. It uses the fs9gps
RNAV Rwy 18 Approach into the Beech Aircraft Factory Airport (KBEC), Wichita, Kansas,
USA. The stock fs9gps database seems not to contain current RNAV Waypoints;
instead, the approach is defined using fs9gps terminal waypoints (�). The waypoint
names and positions and approach nomenclature used in Example 5 are shown below.

Approach
Destination

Airport
(KBEC)

Flight Plan
Termination

Point
(KICT)

Final
Approach Fix

(THEON)

“Intermediate
Fix”

(RAYTH)

Approach
Transition
Waypoint
(CUBOC)

Flight Plan
En Route
Waypoint

(ICT VOR-DME)

Add Initial Leg 2

AddInitia
lLeg 1

Current
Aircraft

Location

Wichita / Beech Factory
KBEC

RNAV Rwy 18 Approach
CUBOC Transition

fs9gps database 5.00 nm 5.00 nm

9.
97

 n
m

The example begins with a Flight Plan
from KHUT to KICT via the ICT VOR-DME
en route waypoint.

It is subsequently edited to add the KBEC
RNAV18 Approach. In the examples that
follow, the Missed Approach Procedure is
excluded from the Approach, and, in
Examples 5.1 through 5.4, the Approach
is loaded, but not activated.

The aircraft does not land at KICT.
Instead, it executes the approach into
KBEC after passing over KICT, the
termination point of the Flight Plan.
fs9gps automatically activates a loaded,
but not activated, Approach when the
aircraft reaches the termination point of
the Flight Plan but does not land there.

KBEC

KHUT

ICT

KICT

 154

Example 5.1 NewApproachAddInitialLeg = 0, LoadApproach = 1

A KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

B C

NorthNorth

AddInitialLeg 0
LoadApproach 1

Approach Loaded,
Not Activated

Approach Loaded,
Not Activated

Approach ActivatedApproach Activated Approach ActivatedApproach Activated

In Figure A, above, the new approach, KBEC RNAV18, has been added with
NewApproachAddInitialLeg set to 0. The xml (the order is important):

'A KBEC' (>@c:FlightPlanNewApproachAirport)

2 (>@c:FlightPlanNewApproachApproach)

5 (>@c:FlightPlanNewApproachTransition)

0 (>@c:FlightPlanNewApproachMissed)

0 (>@c:FlightPlanNewApproachAddInitialLeg)

1 (>@c:FlightPlanLoadApproach)

 155

The Flight Plan and Approach segments are listed above.

In the absence of an approach segment between the aircraft and the Transition
Waypoint, the aircraft flies directly to the Transition Waypoint.

Figure B shows the first approach segment after the approach is (automatically)
activated. No Initial Leg has been added, and the aircraft proceeds directly to the
Transition Waypoint, CUBOC.

Figure C shows the complete flight path.

 156

Example 5.2 NewApproachAddInitialLeg = 1, LoadApproach = 1

A KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

B C

NorthNorth

AddInitialLeg 1
LoadApproach 1

Approach Loaded,
Not Activated

Approach Loaded,
Not Activated

Approach ActivatedApproach Activated Approach ActivatedApproach Activated

The xml:

'A KBEC' (>@c:FlightPlanNewApproachAirport)

2 (>@c:FlightPlanNewApproachApproach)

5 (>@c:FlightPlanNewApproachTransition)

0 (>@c:FlightPlanNewApproachMissed)

1 (>@c:FlightPlanNewApproachAddInitialLeg)

1 (>@c:FlightPlanLoadApproach)

Figure A shows that an initial approach leg from the aircraft position to the Transition
Waypoint has been added. Because the approach has not been activated, it is an
inactive approach segment (gray color) and the aircraft will fly towards ICT VOR-DME
according to the Flight Plan, which is active.

Figure B shows the first approach segment after the approach is (automatically)
activated. Now, the added leg (original aircraft location to Transition Waypoint) is active
and the aircraft flies to intercept that segment. It is not flying directly to CUBOC, the
Transition Waypoint, rather, it is flying to intercept the active approach segment. The
aircraft is actually a little ahead of the waypoint, and because of the intercept algorithm,
it never reaches CUBOC before the next approach segment becomes active and the
aircraft turns to intercept that segment. This is admittedly an unrealistic scenario in that
InitialLeg = 1 was selected but the aircraft was allowed to continue flying the Flight Plan
rather than the Approach.

Figure C shows the complete flight path.

 157

Example 5.3 NewApproachAddInitialLeg = 2, LoadApproach = 1

A KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

B C

NorthNorth

AddInitialLeg 2
LoadApproach 1

Approach Loaded,
Not Activated

Approach Loaded,
Not Activated

Approach ActivatedApproach Activated Approach ActivatedApproach Activated

The xml:

'A KBEC' (>@c:FlightPlanNewApproachAirport)

2 (>@c:FlightPlanNewApproachApproach)

5 (>@c:FlightPlanNewApproachTransition)

0 (>@c:FlightPlanNewApproachMissed)

2 (>@c:FlightPlanNewApproachAddInitialLeg)

1 (>@c:FlightPlanLoadApproach)

Figure A shows that an initial approach leg from the Termination Point of the Flight Plan
to the Transition Waypoint has been added.

Figure B shows the first approach segment after the approach is (automatically)
activated. The added intitial leg is now active, and the aircraft turns to intercept that
segment.

Figure C shows the complete flight path.

 158

Example 5.4 NewApproachAddInitialLeg = 3, LoadApproach = 1

A KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

B C

NorthNorth

AddInitialLeg 3
LoadApproach 1

Approach Loaded,
Not Activated

Approach Loaded,
Not Activated

Approach ActivatedApproach Activated Approach ActivatedApproach Activated

The xml:

'A KBEC' (>@c:FlightPlanNewApproachAirport)

2 (>@c:FlightPlanNewApproachApproach)

5 (>@c:FlightPlanNewApproachTransition)

0 (>@c:FlightPlanNewApproachMissed)

3 (>@c:FlightPlanNewApproachAddInitialLeg)

1 (>@c:FlightPlanLoadApproach)

Figure A shows approach segments beginning at CUBOC and ending at the destination
runway waypoint. No initial legs are shown.

Figure B shows the first approach segment after the approach is (automatically)
activated. An initial approach leg from the Termination Point of the Flight Plan to the
Transition Waypoint was automatically added when the approach was activated, and the
aircraft turns to intercept that segment.

Figure C shows the complete flight path.

 159

The next series demonstrates loading and activating the KBEC RNAV18 Approach in
flight. The aircraft begins under control of the Flight Plan until it reaches ICT VOR-DME,
at which point, the Approach is loaded and activated.

Example 5.5 NewApproachAddInitialLeg = 0, LoadApproach = 2

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

KBEC

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KICT

BA

NorthNorth

AddInitialLeg 0
LoadApproach 2

Approach ActivatedApproach ActivatedApproach ActivatedApproach Activated

The xml:

'A KBEC' (>@c:FlightPlanNewApproachAirport)

2 (>@c:FlightPlanNewApproachApproach)

5 (>@c:FlightPlanNewApproachTransition)

0 (>@c:FlightPlanNewApproachMissed)

0 (>@c:FlightPlanNewApproachAddInitialLeg)

2 (>@c:FlightPlanLoadApproach)

Figure A shows the first approach segment after the approach is activated. There is no
leg connecting the aircraft and the Transition Waypoint. In the absence of an approach
segment between the aircraft and the Transition Waypoint, the aircraft flies directly to
the waypoint.

Figure B shows the complete flight path.

 160

Example 5.6 NewApproachAddInitialLeg = 1, LoadApproach = 2

KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18
A B

NorthNorth

AddInitialLeg 1
LoadApproach 2

Approach Activated
Approach Activated

Approach Activated
Approach Activated

The xml:

'A KBEC' (>@c:FlightPlanNewApproachAirport)

2 (>@c:FlightPlanNewApproachApproach)

5 (>@c:FlightPlanNewApproachTransition)

0 (>@c:FlightPlanNewApproachMissed)

1 (>@c:FlightPlanNewApproachAddInitialLeg)

2 (>@c:FlightPlanLoadApproach)

Figure A shows the first approach segment after the approach is activated.
AddInitialLeg = 1 resulted in a new segment added between the aircraft location and
the Transition Waypoint. The aircraft turns to intercept the new segment, it does not fly
directly to the Transition Waypoint.

Figure B shows the complete flight path.

 161

Example 5.7 NewApproachAddInitialLeg = 2, LoadApproach = 2

KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18
A B

AddInitialLeg 1

KBEC

KHUT

CUBOC

THEON

ICT

RW18

KICT

A

RAYTH

NorthNorth

AddInitialLeg 2
LoadApproach 2

Approach ActivatedApproach ActivatedApproach ActivatedApproach Activated

The xml:

'A KBEC' (>@c:FlightPlanNewApproachAirport)

2 (>@c:FlightPlanNewApproachApproach)

5 (>@c:FlightPlanNewApproachTransition)

0 (>@c:FlightPlanNewApproachMissed)

2 (>@c:FlightPlanNewApproachAddInitialLeg)

2 (>@c:FlightPlanLoadApproach)

Figure A shows the first approach segment after the approach is activated.
AddInitialLeg = 2 resulted in a new segment added between the Termination Point of
the Flight Plan and the Transition Waypoint. The aircraft turns to intercept the new
segment; it does not fly directly to the Transition Waypoint.

Figure B shows the complete flight path.

 162

Example 5.8 NewApproachAddInitialLeg = 3, LoadApproach = 2

KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18

KBEC

KICT

KHUT

CUBOC

THEON

ICT

RAYTH

RW18
A B

NorthNorth

AddInitialLeg 3
LoadApproach 2

Approach ActivatedApproach ActivatedApproach ActivatedApproach Activated

The xml:

'A KBEC' (>@c:FlightPlanNewApproachAirport)

2 (>@c:FlightPlanNewApproachApproach)

5 (>@c:FlightPlanNewApproachTransition)

0 (>@c:FlightPlanNewApproachMissed)

3 (>@c:FlightPlanNewApproachAddInitialLeg)

2 (>@c:FlightPlanLoadApproach)

Figure A shows the first approach segment after the approach is activated. This case is
the same as AddInitialLeg = 1 because the Approach was activated at the same time it
was loaded.

Figure B shows the complete flight path.

 163

Finally, the last example demonstrates FlightPlanLoadApproach = 3, the Activate
Vectors-To-Final instruction.

Example 5.9 NewApproachAddInitialLeg = 0, LoadApproach = 3

KBEC

KICT

KHUT

THEON

ICT

RW18
A B KBEC

KICT

KHUT

THEON

ICT

RW18

NorthNorth

AddInitialLeg 0
LoadApproach 3

5.00 NMile
FAF extension

Approach ActivatedApproach ActivatedApproach ActivatedApproach Activated

RAYTH RAYTH

The xml:

'A KBEC' (>@c:FlightPlanNewApproachAirport)

2 (>@c:FlightPlanNewApproachApproach)

1 (>@c:FlightPlanLoadApproach)

Vectors-To-Final replaces the existing transition with a Vectors transition. It requires
that at least an approach (but not necessarily a transition, too) first be loaded or
activated, or nothing will happen.

If NewApproachMissed and NewApproachAddInitialLeg values have previously been
entered, they will be used again. If not, the default values of zero will be used for
AddInitialLeg, and 1 for Missed. In Example 5.9, the KBEC RNAV18 Approach, CUBOC
Transition is already loaded when Vectors-To-Final (LoadApproach = 3) is executed.

The xml placed following the 1 (>@c:FlightPlanLoadApproach) statement above:

0 (>@c:FlightPlanNewApproachAddInitialLeg)

3 (>@c:FlightPlanLoadApproach)

 164

The Flight Plan and Approach segments are listed below:

Figure A shows the first approach segment after the Vectors-To-Final approach is
loaded/activated. No initial leg is added to the approach, so the aircraft proceeds
directly to the Vectors-To-Final Waypoint, the Final Approach Fix (THEON).

Note that the aircraft does not proceed to new Transition Waypoint which is the
outboard end of the extended approach (near RAYTH). Flying direct to the Final
Approach Fix results in an unacceptable, un-stabilized approach; an aircraft should never
make a significant turn after reaching the Final Approach Fix. For this reason, an initial
leg should be added when selecting FlightPlanLoadApproach = 3 Vectors-To-Final, as
demonstrated in the next example.

Figure B shows the complete flight path.

 165

Example 5.10 NewApproachAddInitialLeg = 1, LoadApproach = 3

KBEC

KICT

KHUT

THEON

ICT

RW18
A B

AddInitialLeg 1
LoadApproach 3

KBEC

KICT

KHUT

ICT

RW18

THEON

NorthNorth

5.00 NMile
FAF extension

Approach Activated
Approach Activated

Approach Activated
Approach Activated

RAYTH RAYTH

The xml:

'A KBEC' (>@c:FlightPlanNewApproachAirport)

2 (>@c:FlightPlanNewApproachApproach)

1 (>@c:FlightPlanLoadApproach)

1 (>@c:FlightPlanNewApproachAddInitialLeg)

3 (>@c:FlightPlanLoadApproach)

Figure A shows the first approach segment after the Vectors-To-Final approach is
loaded/activated. In this case, an initial leg from the aircraft location to the new
Transition Waypoint near RAYTH has been added. The aircraft turns to intercept that
approach segment.

Figure B shows the complete flight path.

Note: Throughout Example 5, the flight paths depict an exaggerated turn radius in
order to demonstrate actions of the different FlightPlanNewApproach selections more
clearly.

 166

En Route Navigation

� FlightPlanWaypointIndex (enum) [Get, Set]

The currently indexed waypoint.

� FlightPlanWaypointLatitude
� FlightPlanWaypointLongitude (degrees, radians) [Get]

Latitude and longitude of the currently indexed Waypoint. Units are degrees (decimal
format, not deg, min, sec) or radians.

� FlightPlanWaypointAltitude (feet) [Get]

For Waypoint types 1, 3, and 4 (Airport, VOR, VOR) the default value is the asl ground
elevation of the currently indexed waypoint. Default value for Intersection (Type 2) and
User Waypoints (Type 5) is zero.

FlightPlanWaypointAltitude can be changed by manually editing the altitude field of the
.pln file and reloading the flight plan. For example, the new altitude for Waypoint 3 is
15000’:

waypoint.3=K1, LKV, , LKV, V, N42* 29.57', W120* 30.43', +015000.00,

� FlightPlanWaypointICAO (string) [Get]

The ICAO of the currently indexed Waypoint.

� FlightPlanWaypointIdent (string) [Get]

The Ident of the currently indexed Waypoint. FlightPlanWaypointIdent can
accommodate a string length up to 10. Although Idents with slen greater than 5 do not
exist in the fs9gps database, it is possible to create a Type 5 User Waypoint and assign
an Ident name up to 10 characters long by through use of FlightPlanNewWaypointIdent,
for example:

'ABC1234567' (>@c:FlightPlanNewWaypointIdent)

A User defined ident such as this will not permanently update the fs9gps database nor is
it searchable by ICAO Search.

 167

� FlightPlanWaypointAirwayIdent (string) [Get]

The Low Alt (Victor) or High Alt (Jet) Airway Ident if the currently indexed leg is part of
an Airway and FlightPlanRouteType = 2 or 3 (Low Alt or High Alt Airways).

� FlightPlanWaypointType (enum) [Get]

Waypoint Type # Waypoint Type

0 NONE 4 NDB

1 AIRPORT 5 USER

2 INTERSECTION 6 ATC

3 VOR

http://msdn.microsoft.com/en-us/library/cc526954.aspx#ATC_WAYPOINT_TYPE

Waypoints added by the user through FlightPlanAddWaypoint that do not correspond to
Waypoint Types 1 through 4, that is, the added Waypoint is simply a point on the map,
then Waypoint Type = 5 is assigned by fs9gps.

� FlightPlanWaypointMinAltitude (feet) [Get]

WaypointMinAltitude is the Minimum En route Altitude assigned to Low Altitude Victor
and High Altitude Jet Airways. Only flight plan legs that are part of a Victor or Jet
Airway have WaypointMinAltitude and it is returned only when FlightPlanRouteType = 2
or 3. Flight Planner Find Route must also first be clicked.

MEAs typically vary along an Airway, so the MEA belonging to the portion of the Airway
which is the currently indexed flight plan leg is returned as WaypointMinAltitude. For
example, see the various WaypointMinAltitude associated with V134 and V591 in the
figure below. Non-Airway legs such as Airport KLIC to VOR FQF in the figure below will
return a zero value for WaypointMinAltitude.

 168

Units bug: MinAltitude is populated in the database in feet, but its Units flag is the FS
distance default, meters. If you want MinAltitude in feet, you must either omit units or
specify units as ‘meters’. For example, V10 airway between Hutchinson VOR (HUT) and
STAFF intersection (Kansas, USA) has a real-life MEA of 3700 feet:

(C:fs9gps:FlightPlanWaypointMinAltitude) = 3700 or

(C:fs9gps:FlightPlanWaypointMinAltitude, meters) = 3700

But, if you specify units = feet:

(C:fs9gps:FlightPlanWaypointMinAltitude, feet) = 12140

the database altitude will be interpreted in default FS units, meters, then multiplied by
3.281, resulting in 12,140 -- which is not the correct value. If you want meters units,
then you must do the conversion manually, for example:

(C:fs9gps:FlightPlanWaypointMinAltitude) 3.281 /
(>L:FlightPlanWaypointMinAltitude, meters)

Not all segments of all airways within the FS9 gps database have assigned MEAs - some
isolated segments simply have a value of zero. Additionally, some other segments may
have an obviously incorrect value while the adjoining segments show the proper MEA as
demonstrated below. With FSX, these infrequent errors may have been corrected, but
I’m not sure.

 169

� FlightPlanWaypointFrequency (MHz) [Get]

FlightPlanWaypointFrequency returns incorrect VOR and NDB frequency data in FS9 but
functions properly in FSX. Note that default Flight Sim frequency units are Hertz, so if
this variable is displayed using MHz units that would be appropriate for VORs, then KHz
NDB frequencies displayed in the same list will ‘appear’ incorrect (off by a factor of
1000) but in fact are valid frequencies.

� FlightPlanWaypointMagneticHeading (degrees) [Get]

FlightPlanWaypointMagneticHeading is the magnetic bearing to the currently indexed
Waypoint from the previous Waypoint.

WaypointMagneticHeading is not the same as FlightPlanWaypointApproachCourse. Both
return magnetic bearing but WaypointMagneticHeading applies to en route Waypoints
and WaypointApproachCourse applies to approach segments.

� FlightPlanWaypointSpeedEstimate (knots) [Get]

FlightPlanWaypointSpeedEstimate is a
ground speed estimate that fs9gps
derives from the aircraft’s cruising
airspeed defined in the aircraft.cfg file.
It is used to calculate WaypointETE.
WaypointETE is not updated using
actual groundspeed as the flight
progresses. As demonstrated in the
figure, wind speed and direction affect
WaypointSpeedEstimate. Note if the
wind changes in-flight, SpeedEstimate
and WaypointETE will not change.

FlightPlanWaypointSpeedEstimate

180

190

200

210

220
0 90 18
0

27
0

36
0

Aircraft Heading (degrees magnetic)

F
lig

ht
P

la
nW

ay
po

in
tS

pe
ed

E
st

im
at

e
(k

no
ts

)

Wind Direction = 089°
Wind Velocity = 20 knots

cruise_speed = 200.0 knots

� FlightPlanWaypointDistance (nmiles) [Get]

FlightPlanWaypointDistance is the length of the currently indexed Flight Plan leg.

� FlightPlanWaypointDistanceTotal (nmiles) [Get]

FlightPlanWaypointDistanceTotal is the cumulative distance of all Flight Plan legs starting
at Waypoint index zero (the departure airport) through the currently indexed Waypoint.
When the index points to the last Waypoint (the destination airport), DistanceTotal is
the total length of the flight plan measured along flight legs.

 170

� FlightPlanWaypointDistanceRemaining (nmiles) [Get]

FlightPlanWaypointDistanceRemaining is the distance from the currently indexed
Waypoint to the last Waypoint, the destination airport.

� FlightPlanWaypointRemainingDistance (nmiles) [Get]

FlightPlanWaypointRemainingDistance is the leg distance remaining to be flown. For the
active waypoint, that is, for the segment currently being flown, it is the remaining
distance from the aircraft’s current position to the next Waypoint. For Waypoints
beyond that, it is just the total length of that leg. For Waypoints already passed,
WaypointRemainingDistance is 0.0.

In the figure below, the aircraft is en route, and 15.0 NMiles remain before reaching
Waypoint 1, CMP VOR. FlightPlanActiveWaypoint = 1. WaypointRemainingDistance for
Index 1 is therefore, 15.0. Because the aircraft is not yet on leg 2 (ActiveWaypoint = 2)
or leg 3 (ActiveWaypoint = 3), WaypointRemainingDistance for those Waypoints is still
the total length of the respective Flight Plan leg.

WaypointRemainingDistance for ActiveWaypoint counts down as the flight progresses.

 171

� FlightPlanWaypointRemainingTotalDistance (nmiles) [Get]

FlightPlanWaypointRemainingTotalDistance is the cumulative remaining distance from
current aircraft position to the indexed waypoint. It is the same as RemainingDistance
when the currently indexed waypoint is the Active Waypoint. When the indexed
waypoint is the destination airport, RemainingDistance represents the total distance
remaining in the flight. RemainingDistance is measured along the flight path; it is not a
direct-to measurement.

TURN ANTICIPATION

To accomplish a smooth turn to the next heading as the aircraft approaches a waypoint,
the aircraft must begin its turn before actually reaching the waypoint. The distance at
which this happens is the Turn Anticipation Distance. Turn Anticipation Distance
algorithms and rules of thumb in the literature vary but most are a function of the
amount of turn; how many degrees change of direction. With the fs9gps module,
however, Turn Anticipation is a function of groundspeed, and the ActiveWaypoint
changes, advancing by 1, when a certain seconds-to-waypoint time is reached
(WaypointEstimatedTimeRemaining). This is independent of the amount of degrees

 172

turned. Several (maybe most) popular flight sim autopilots, including the stock FS9
Bendix-King, Reality-XP STEC55X, and the Simflyer STEC55X autopilots which I have
tested, initiate the turn when the ActiveWaypoint changes, or, when on approach, when
FlightPlanActiveApproachWaypoint changes.

I have timed hundreds of ActiveWaypoint changes at random groundspeeds and
direction changes using a variety of autopilots and also without autopilot. The
conclusions are that the timing of the ActiveWaypoint change is independent of the use
of an autopilot (of course) and the amount of turn, and that TimeRemaining when the
ActiveWaypoint change occurs is a linear function of groundspeed (which means it’s a
power function of distance), as shown in the graph below. The Groundspeed vs.
WaypointEstimatedTimeRemaining relationship is built into fs9gps.

5

10

15

20

25

90 100 110 120 130 140 150 160 170 180 190 200 210

Groundspeed (knots)

W
a

y
p

o
in

tE
s
ti

m
a

te
d

T
im

e
R

e
m

a
in

in
g

(
s
e

c
o

n
d

s
)

RXP
SimFlyer
FS9
No A/P

Turn
Anticipation

Distance
(Time)

y = 0.1139x - 0.7282
R2 = 0.9928

ActiveWaypoint Change Anticipation Time

Autopilot Used:

The table below captures FlightPlanWaypoint variable status the moment before
ActiveWaypoint changes from 1 to 2. The aircraft is 0.38 minutes = 24 seconds
EstimatedTimeRemaining from Waypoint 2. There are 1.40 NMiles RemainingDistance
in Flight Plan leg 1.

ActiveWaypoint changes to 2 when EstimatedTimeRemaining = 0.38 (23 seconds) at
which point, the aircraft is 1.4 NMiles from Waypoint 2. At the instant ActiveWaypoint
changes, Waypoint 1 RemainingDistance becomes 0.0 and the 1.4 NMiles is moved to
Waypoint 2, as demonstrated in the table below. Additionally, Waypoint Index 1
EstimatedTimeRemaining becomes 0.0. Waypoint Index 2 EstimatedTimeRemaining
increases from 13.00 to 13.37 minutes to accommodate the additional 1.4 NMiles.

 173

A moment later, Waypoint Index 2 RemainingDistance is updated by adding Waypoint
Index 2 distance, 45.6 NMiles, which results in Waypoint 2 RemainingDistance = 46.8
NMiles.

It’s tedious to go through the steps of a waypoint change like this, but informative to
understand. Turn Anticipation, or, more to the point, Waypoint Change Anticipation
affects all En Route Waypoints and Approach Segments and Sub-Segments in fs9gps.

 174

� FlightPlanWaypointTimeZoneDeviation (minutes) [Get]

Because ETA is in Local Time, Time Zone Deviation is necessary to adjust to Local Time
for flights that cross time zone boundaries.

� FlightPlanWaypointETE (minutes) [Get]

FlightPlanWaypointETE is the estimated en route time to the currently indexed waypoint.
This estimate is calculated using FlightPlanWaypointSpeedEstimate which in turn, is
derived from the aircraft cruising airspeed found in the aircraft.cfg file incorporating
wind speed and direction.

FlightPlanWaypointETE is established when the flight plan is loaded and does not
change during flight regardless of the groundspeed, position, or heading of the aircraft.

� FlightPlanWaypointATE (minutes) [Get]

FlightPlanWaypointATE is the actual elapsed time from ActiveWaypoint change to
ActiveWaypoint change. Before reaching the next Waypoint, or, more precisely, before
the ActiveWaypoint changes, WaypointATE returns zeros.

� FlightPlanWaypointEstimatedTimeRemaining (minutes) [Get]

FlightPlanWaypointEstimatedTimeRemaining is the time remaining until the currently
indexed waypoint is reached. It is calculated by dividing WaypointDistanceRemaining by
the current aircraft ground speed (A:GROUND VELOCITY) . EstimatedTimeRemaining

is associated with individual flight plan legs and is not cumulative involving multiple legs.

For the active waypoint, that is, for the flight plan leg currently being flown,
EstimatedTimeRemaining is the remaining time from the aircraft’s current position to the
next Waypoint, so it counts down as the aircraft flies toward that Waypoint. For
Waypoints beyond that, it is the time required to fly the total length of that leg at the
current groundspeed. For Waypoints already passed, EstimatedTimeRemaining is 0.0.

� FlightPlanWaypointETA (hours) [Get]

FlightPlanWaypointETA is the estimated time of arrival at the currently indexed
Waypoint. It is a Local Time reference, so the most sensible units are probably Hours.
Some points to consider:

• WaypointETA for the currently indexed Waypoint is calculated by adding
WaypointEstimatedTimeRemaining for the currently indexed Waypoint to Local
Time (e.g., EstimatedTimeRemaining + E:LOCAL TIME).

• There is a slightly different rule, however, that applies to WaypointIndex 0.

WaypointETA for WaypointIndex 0, the departure airport, is 0.00 while the
aircraft is on the ground. WaypointETA is set to E:LOCAL TIME at the moment

 175

the aircraft becomes airborne, when A:SIM ON GROUND, bool = 0. It does

not matter where the aircraft starts its flight plan: at a Parking Gate, on the
Active Runway, lots of taxiing or little taxiing, WaypointETA for WaypointIndex 0
is 0.00 until takeoff.

• When the aircraft passes a Waypoint (or, being precise, when ActiveWaypoint

changes), WaypointETA equals Local Time, and it does not change after that
regardless of the groundspeed, position, or heading of the aircraft because
EstimatedTimeRemaining for a Waypoint that has been passed is zero. In other
words, WaypointETA becomes Waypoint Actual Time of Arrival when a Waypoint
is passed.

� FlightPlanWaypointFuelRemainedAtArrival (gallons) [Get]

Fuel calculations are based on fuel consumption rates derived from the aircraft model
design and configuration and fuel quantity values. Fuel consumption rates and quantity
can be accessed from A:Vars, for example, (A:ENG1 FUEL FLOW GPH, gallons
per hour) and (A:FUEL TOTAL QUANTITY, gallons) .

� FlightPlanWaypointEstimatedFuelConsumption (gallons) [Get]

Fuel calculations are based on fuel consumption rates derived from the aircraft model
design and configuration and fuel quantity values. Fuel consumption rates and quantity
can be accessed from A:Vars, for example, (A:ENG1 FUEL FLOW GPH, gallons
per hour) and (A:FUEL TOTAL QUANTITY, gallons) .

� FlightPlanWaypointActualFuelConsumption (gallons) [Get]

Fuel calculations are based on fuel consumption rates derived from the aircraft model
design and configuration and fuel quantity values. Fuel consumption rates and quantity
can be accessed from A:Vars, for example, (A:ENG1 FUEL FLOW GPH, gallons
per hour) and (A:FUEL TOTAL QUANTITY, gallons) .

 176

Instrument Approaches

Variables of the FlightPlanApproach and FlightPlanWaypointApproach groups define the
flight path according to Instrument Approach Procedures from the en route approach
transition point through the approach procedure, to the landing point, and finally to the
missed approach procedure and holding pattern.

Throughout the discussion of Approach variables, an example instrument flight from
Hutchinson Municipal Airport (Hutchinson, Kansas, USA, “KHUT”) to Wichita Mid-
Continent Airport (Wichita, Kansas, USA, “KICT”) is used, incorporating the ILS Rwy 19R
Approach, ICT VORTAC Transition into Wichita.

In the example shown below, the aircraft departs Hutchinson and proceeds to the
Transition Fix, ICT VORTAC. The Approach Transition in this particular simulation is
flown at 7000’ altitude and from there, according to the descent profile for the
approach. Between rotate and flare, the aircraft is flown by the stock FS9 Bendix-King
Radio Autopilot with the user controlling altitude except on Final Approach at which
point guidance is switched from GPS to NAV. Approach segment and sub-segment
colors match those used in the discussion of the KICT ILS Rwy 19 Approach in this
section.

Wichita Mid-Continent Airport (KICT)
ILS Rwy 19R Approach, ICT VORTAC Transition

Wichita Mid-Continent Airport (KICT)
ILS Rwy 19R Approach, ICT VORTAC Transition

KHUTKHUT

KICTKICT

ICT
VORTAC

ICT
VORTAC

 177

 178

 179

� FlightPlanApproachWaypointType (enum) [Get]

FlightPlanApproachWaypointType is an enum referring to the navigation procedure
objective of the currently active (as opposed to currently indexed) approach segment.

Name # Name # Name

0 NONE 4 DME_ARC_LEFT 8 DISTANCE

1 FIX 5 DME_ARC_RIGHT 9 ALTITUDE

2 PROC_TURN_LEFT 6 HOLDING_LEFT 10 MANUAL_SEQ

3 PROC_TURN_RIGHT 7 HOLDING_RIGHT 11 VECTORS_TO_FINAL

http://msdn.microsoft.com/en-us/library/cc526954.aspx#GPS_Approach_Waypoint_Type

� FlightPlanApproachMode (enum) [Get]

FlightPlanApproachMode is a number used to describe the active segment of the
approach.

Approach Mode # Approach Mode

0 NONE 2 FINAL

1 TRANSITION 3 MISSED

http://msdn.microsoft.com/en-us/library/cc526954.aspx#GPS_APPR_TYPE

ApproachMode is similar to US F.A.A. Approach Segment nomenclature as listed below:

US FAA Approach FS9, FSX US FAA Approach FS9, FSX

Procedure Segments FlightPlanApproachMode Procedure Segments FlightPlanApproachMode

En Route 0 NONE Final Approach 2 FINAL

Feeder Route 1 TRANSITION Missed Approach 3 MISSED

Initial Approach 1 TRANSITION Holding Pattern 3 MISSED

Intermediate Approach 2 FINAL

� FlightPlanApproachSegmentType (enum) [Get]

FlightPlanApproachSegmentType is a number indicating the direction of turn within an
approach segment.

0 = No turn

1 = Right turn

2 = Left turn

Approach Segments and Sub-Segments: Approach segments containing both turns
and straight sections within the segment are divided into sub-segments. SegmentType

 180

is applied to the sub-segment representing the continuous turn (e.g., procedure turn,
missed approach turn to holding fix, holding pattern turns).

FlightPlanApproachSegmentType is an intra-segment variable and does not apply to
turns from one straight approach segment to the next such as the turn to the outbound
initial approach segment that occurs when the aircraft reaches the Initial Approach Fix.

This can be confusing without a picture, so refer to the detailed dissection of KICT ILS
19R ICT Transition at the end of this section for additional clarification.

� FlightPlanApproachSegmentDistance (nmiles) [Get]

FlightPlanApproachSegmentDistance is the remaining distance within the currently
indexed approach segment or sub-segment between the aircraft position and the
termination point of the segment. It counts downs as the aircraft proceeds toward the
segment termination point.

ApproachSegmentDistance can be used to measure and keep track of the length and
remaining distance of sub-segments whereas WaypointApproachLegDistance and
WaypointApproachRemainingDistance do not get into the sub-segment level.

Also handy is that ApproachSegmentDistance and ApproachSegmentLength are also
active during the En Route flight phase, returning the same values as
WaypointRemainingDistance and WaypointDistance, respectively.

� FlightPlanApproachSegmentLength (nmiles) [Get]

FlightPlanApproachSegmentLength is the total length of the indexed approach segment.
When the approach segment involves turns, (e.g., a procedure turn or missed approach
turn to a holding fix) ApproachSegmentLength is the total length of the active sub-
segment. As discussed later on, sub-segments do not have separate index pointers.

� FlightPlanApproachIsWaypointRunway (bool) [Get]

Final Approach to a Runway. FlightPlanApproachIsWaypointRunway equals 1 when the
active approach segment is the Final Approach segment and the termination point is a
destination runway waypoint (e.g., RW18). Also, FlightPlanWaypointApproachMode = 2
(Final).

For all other approach segments, ApproachIsWaypointRunway equals 0.

� FlightPlanApproachAirportIdent (string) [Get]

FlightPlanApproachAirportIdent is the Ident of the Approach procedure destination
airport.

 181

� FlightPlanApproachType (enum) [Get]

FlightPlanApproachType is an enum representing the type of approach procedure.

Approach Enum # Approach Enum # Approach Enum

0 UNKNOWN 5 LORAN 10 LDA

1 VFR 6 RNAV 11 LOC

2 HEL 7 VOR 12 MLS

3 TACAN 8 GPS 13 ILS

4 NDB 9 SDF

http://msdn.microsoft.com/en-us/library/cc526954.aspx#AirportApproachType

In the KICT example, it is an ILS approach, FlightPlanApproachType = 13.

� FlightPlanApproachIndex (enum) [Get]

FlightPlanApproachIndex is an enum representing the selected approach for the
destination airport. In the KICT example used throughout this section, ILS 19R
approach has been selected, consequently FlightPlanApproachIndex = 3.

Approaches available for Wichita Mid-Continent Airport (KICT):

0 ILS 01L
1 ILS 01R
2 ILS 19L
3 ILS 19R
4 VOR 01R
5 GPS 01L

6 GPS 01R
7 GPS 14
8 GPS 19L
9 GPR 19R
10 GPS 32
11 RNAV 01L

12 RNAV 01R
13 RNAV 14
14 RNAV 19L
15 RNAV 19R
16 RNAV 32
17 VOR 14

� FlightPlanApproachName (string) [Get]

FlightPlanApproachName is the name of the selected approach. In the KICT example, it
is “ILS 19R”.

� FlightPlanApproachTransitionIndex (enum) [Get]

FlightPlanApproachTransitionIndex is an enum representing the desired transition for the
previously selected approach. In the KICT example used throughout this section, ILS
19R approach has been selected utilizing the ICT transition, consequently
FlightPlanApproachTransitionIndex = 1.

Transitions available for the ILS 19R approach at Wichita Mid-Continent Airport (KICT):

0 VECTORS
1 ICT
2 HOVER

 182

� FlightPlanApproachTransitionName (string) [Get]

FlightPlanApproachTransitionName is the name of the selected transition. In the KICT
example, “ICT”.

� FlightPlanIsApproachFinal (bool) [Get]

FlightPlanIsApproachFinal is a bool equaling 1 when FlightPlanWaypointApproachIndex 0
is the Final Approach Fix and WaypointApproachIndex 1 is the destination runway
waypoint. The normal circumstance for this is a Vectors-To-Final Transition. Other than
this situation, FlightPlanIsApproachFinal equals 0.

For a Vectors-To-Final Transition, fs9gps adds a 5.00 NMile sub-segment onto the Final
Approach segment. The heading is the same as the Final Approach segment, and it is
placed outboard of the Final Approach Fix. The sub-segment provides room to
accommodate a turn to the Final Approach heading prior to reaching the Final Approach
Fix.

Unlike the other sub-segments discussed in this section, the length of a Vectors-To-Final
sub-segment is not a function of flaps_up_stall_speed specified in the

aircraft.cfg file. It appears to always be 5.00 NMiles.

FlightPlanIsApproachFinal is set through use of FlightPlanNewApproachTransition or
FlightPlanLoadApproach.

� FlightPlanIsApproachMissed (bool) [Get]

FlightPlanIsApproachMissed is a Boolean representing whether or not the Missed
Approach procedure is included in the Approach procedure.

0 No Missed Approach procedure included

1 Missed Approach procedure is included in Approach

It is set through use of FlightPlanNewApproachMissed.

� FlightPlanApproachWaypointsNumber (enum) [Get]

FlightPlanApproachWaypointsNumber is the number of segments in the selected
approach and transition. In the KICT ILS 19R / ICT Transition example used throughout
this section, there are 9 approach segments (Index 0 through 8) going from the En
route Fix that defines the Transition (Index 0) through the Holding Pattern at the
Missed Approach Holding Waypoint (Index 8).

Note that when the sub-segments that define intra-segment turns are included, there is
a combined total of 16 segments plus sub-segments.

 183

� FlightPlanWaypointApproachIndex (enum) [Get, Set]

FlightPlanWaypointApproachIndex is the index pointer for the WaypointApproach
variables. The WaypointApproach variables describe length, location, direction, etc.,
attributes of the approach segments.

� FlightPlanWaypointApproachICAO (string) [Get]

The ICAO ident of the currently indexed segment. Approach segments are defined by
their termination points, so FlightPlanWaypointApproachICAO, ApproachName,
ApproachLatitude and Longitude, and ApproachAltitude refer to the termination point of
the segment.

� FlightPlanWaypointApproachName (string) [Get]

FlightPlanWaypointApproachName is the navaid ident or runway name associated with
the termination point of the currently indexed approach segment.

� FlightPlanWaypointApproachType (enum) [Get]

FlightPlanWaypointApproachType is an enum referring to the navigation procedure
objective of the currently indexed (but not necessarily the currently active) approach
segment.

Name # Name # Name

0 NONE 4 DME_ARC_LEFT 8 DISTANCE

1 FIX 5 DME_ARC_RIGHT 9 ALTITUDE

2 PROC_TURN_LEFT 6 HOLDING_LEFT 10 MANUAL_SEQ

3 PROC_TURN_RIGHT 7 HOLDING_RIGHT 11 VECTORS_TO_FINAL

� FlightPlanWaypointApproachMode (enum) [Get]

FlightPlanWaypointApproachMode is a number used to describe the currently indexed
segment of the approach.

Approach Mode # Approach Mode

0 NONE 2 FINAL

1 TRANSITION 3 MISSED

http://msdn.microsoft.com/en-us/library/cc526954.aspx#GPS_APPR_TYPE

 184

� FlightPlanWaypointApproachLatitude
� FlightPlanWaypointApproachLongitude (degrees) [Get]

The latitude and longitude of the termination point – the waypoint - of the currently
indexed approach segment. The termination point of the segment and the waypoint are
one and the same.

� FlightPlanWaypointApproachAltitude (feet) [Get]

The altitude of the currently indexed approach waypoint.

� FlightPlanWaypointApproachCourse (degrees) [Get]

For straight approach segments, FlightPlanWaypointApproachCourse is the bearing of
the approach segment pointing toward the termination point.

Unfortunately, fs9gps returns a mixture of true and magnetic bearings in what appears
to be a software bug. They should be magnetic. Interestingly, the CustomDraw utility
within fs9gps renders the flight path correctly, but the ApproachCourse variable that an
autopilot accesses is not always the magnetic course that an autopilot expects, causing
some turns to initially be over or under executed.

For segments that include turn sub-segments, the following applies:

• Procedure Turn: ApproachCourse is the magnetic bearing of the 45° turn. In
the KICT ILS Rwy 19R example, 328°. Fs9gps correctly returns 328° M.

• Missed Approach Turn Toward Holding Fix: ApproachCourse is the bearing
of the culmination of the Missed Approach turn. Fs9gps returns a true bearing
for this sub-segment. In the KICT ILS 19R Missed Approach example, this
causes the aircraft to turn 7.1° too far to the north before ultimately turning
direct to the Holding Fix, resulting in a “U” shaped Missed Approach Turn being
flown rather than the smooth turn intended.

• Holding Pattern Turn: ApproachCourse is the bearing of the final sub-
segment of the Holding Pattern, the segment that terminates at the Holding Fix.
In the KICT ILS Rwy 19R example, it is 180° M. Fs9gps correctly returns 180°M.

The WaypointApproachCourse bearings listed in � green font in the FS9 Transitions

and Approach Segments ILS 19R approach diagram (Page 176) are degrees True, but
fs9gps should have returned degrees Magnetic. I have no idea why this occurs.

� FlightPlanWaypointApproachTarget (feet) [Get]

FlightPlanWaypointApproachTarget is the Missed Approach straight climb out target
altitude. It is a function of ApproachLegDistance, at about a 3.8° climb angle, as shown
in the graph below. The graph plots the ApproachTarget - LegDistance pairs for the
Wichita, Kansas U.S.A. (KICT) airport approaches.

 185

1000

1500

2000

2500

3000

3500

4000

0.0 1.0 2.0 3.0 4.0 5.0 6.0

A
pp

ro
ac

hT
ar

ge
t(

fe
et

 a
sl

)

RNAV 01L

RNAV 19R

GPS 19L

GPS 32

NDB 01R

ILS 01L

VOR 14

ILS 19R

ILS 01R

ApproachLegDistance (NMiles)

WaypointApproachTarget
A
p
p
ro

a
ch

T
a
rg

e
t

(F
e
e
t a

g
l)

RNAV 01L

RNAV 19R

GPS 19L

GPS 32

NDB 01R

ILS 01L

VOR 14

ILS 19R

ILS 01R

Angle = 3.8°
Gradient = 6.7%

Rate = 409 ft / nm

Angle = 3.8°
Gradient = 6.7%

Rate = 409 ft / nm

KICT ILS 19R
ALT 1382’

2500

2000

1500

1000

500

0

The approach segment that contains WaypointApproachTarget will be the first approach
segment with WaypointApproachMode = 3. It may or may not have an ICAO or Name.
At minimum, the Target waypoint has Lat and Lon, Type and Mode, which are sufficient
information to define an Approach Waypoint.

 186

In practical fs9gps terms, WaypointApproachTarget may be the altitude that FS9 ATC
gives in its missed approach instructions.

The figure below shows a very small sample of WaypointApproachTarget from various
approaches around the world. Many have a steeper Missed Approach climb-out rate,
but it appears that there is a consistent minimum rate of 409 ft / NMile = 3.8°. There is
also a noteworthy population of low altitude WaypointApproachTarget values. As a rule,
an aircraft should not turn on climb-out under 400 feet agl, but that doesn’t really
explain why fs9gps has so many WaypointApproachTarget values around 500 feet agl.

WaypointApproachTarget

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0

FlightPlanWaypointApproachLegDistance (NMiles)

T
a
rg

e
t
(F

e
e
t

a
g
l) USA

CANADA

URUGUAY

JAPAN

CHINA

THAILAND

VIETNAM

MALAYSIA

MALDIVES

FRANCE

SCOTLAND

Rate = 409 ft / nm
Gradient = 6.7%
Angle = 3.8°

� FlightPlanWaypointApproachLegDistance (nmiles) [Get]

FlightPlanWaypointApproachLegDistance is the length of the currently indexed approach
segment. For approach segments that involve turns within the segment, such as a
procedure turn, ApproachLegDistance is the combined flight distance of all parts, or sub-
segments, of the approach segment, including the turn. Refer to the KICT ILS Rwy 19R
ICT Transition segment discussion at the end of this section for further clarification.

FlightPlanWaypointApproachIndex = 0 is the En Route Fix and represents the starting
point of the approach transition. ApproachLegDistance for this point is 0.00 before the
approach is activated. Once activated, ApproachLegDistance for
WaypointApproachIndex = 0 becomes the remaining distance from the aircraft position
to the En Route Fix. This is the same as FlightPlanWaypointRemainingDistance of the
active waypoint when the approach is activated.

 187

� FlightPlanWaypointApproachLegTotalDistance (nmiles) [Get]

FlightPlanWaypointApproachLegTotalDistance is the cumulative distance of all Approach
segments starting at WaypointApproachIndex = 0 through the currently indexed
Approach Waypoint. When the index points to the last Approach Waypoint (the Holding
fix usually), LegTotalDistance is the total length of the flight measured along flight
segments, including one circuit around the holding pattern.

FlightPlanWaypointApproachLegTotalDistance of the Approach phase is analogous to
FlightPlanWaypointDistanceTotal of the en route phase.

� FlightPlanWaypointApproachLegFromDistance (nmiles) [Get]

FlightPlanWaypointApproachLegFromDistance is the distance from the currently indexed
Approach Segment to the termination point of the last Approach Segment.

FlightPlanWaypointApproachLegFromDistance of the Approach phase is analogous to
FlightPlanWaypointDistanceRemaining of the en route phase.

� FlightPlanWaypointApproachRemainingDistance (nmiles) [Get]

FlightPlanWaypointApproachRemainingDistance is the segment distance remaining to be
flown. For the active approach segment, that is, for the segment currently being flown,
it is the remaining distance from the aircraft’s current position to the termination point
of the current segment. For segments beyond that, it is just the total length of the
approach segment. WaypointApproachRemainingDistance is 0.0 for approach segments
already passed.

FlightPlanWaypointApproachRemainingDistance is a segment measurement; it does not
measure distances of sub-segments. FlightPlanApproachSegmentDistance does that.

FlightPlanWaypointApproachRemainingDistance of the Approach phase is analogous to
FlightPlanWaypointWaypointRemainingDistance of the en route phase.

� FlightPlanWaypointApproachRemainingTotalDistance (nmiles) [Get]

FlightPlanWaypointApproachRemainingTotalDistance is the cumulative remaining
distance from current aircraft position to the termination point of the indexed segment.
It is the same as ApproachRemainingDistance when the indexed segment is the active
segment. ApproachRemainingDistance is measured along flight plan segments; it is not
a direct-to measurement.

FlightPlanWaypointApproachRemainingTotalDistance of the Approach phase is analogous
to FlightPlanWaypointRemainingTotalDistance of the en route phase.

 188

Miscellaneous

DISSECTING THE KICT ILS19R APPROACH SEGMENTS

A closer look at the construction of the approach segments found in the KICT example.

The table below lists the 9 waypoints associated with the ILS 19R Approach, ICT
transition into KICT. Variable Segment and Sub-segment lengths are based on Flaps Up
Stall Speed = 86.0 knots.

The waypoint segments, sub-segments and flight path are demonstrated as follows:

FlightPlanWaypointApproachIndex 0:

Enroute Fix

0

FlightPlanActiveApproachWaypoint = 0 (the Index)

FlightPlanWaypointApproachType = 1 (Fix)

FlightPlanWaypointApproachMode = 1 (Transition)

FlightPlanApproachIsWaypointRunway = 0

ICTICT

En Route Fix Segment

FlightPlanWaypointApproach Leg

Segment Type Mode Altitude Target Course Distance

Enroute Fix 1 1 N/A (0') N/A (0') -001° 0.00 Enroute Fix (often is the Transition name)

0 Index0 Index

Index 0 is the En Route Fix, which for this Approach Transition is the ICT VOR-DME.

 189

FlightPlanWaypointApproachIndex 1:

HOVER
(IAF)
HOVER
(IAF)

1

Approach Transition

FlightPlanActiveApproachWaypoint = 1 (the Index)

FlightPlanWaypointApproachType = 1 (Fix)

FlightPlanWaypointApproachMode = 1 (Transition)

FlightPlanApproachIsWaypointRunway = 0

Approach Transition

FlightPlanActiveApproachWaypoint = 1 (the Index)

FlightPlanWaypointApproachType = 1 (Fix)

FlightPlanWaypointApproachMode = 1 (Transition)

FlightPlanApproachIsWaypointRunway = 0

8.78

ICTICT

Approach Transition Segment

FlightPlanWaypointApproach Leg

Segment Type Mode Altitude Target Course Distance

Appr. Transition 1 1 3500 N/A (0') 093° 8.78 Begins at Enroute Fix. Ends at IAF - HOVER

8.78 nm :FlightPlanWaypointApproachLegDistance

1 Index1 Index

FlightPlanWaypointApproachIndex 2:

HOVER
(IAF)

013°

32
8°

2
12.68

2.
87

4.30

0.13

1.37

Initial Approach

FlightPlanActiveApproachWaypoint = 2 (the Index)

FlightPlanWaypointApproachType = 3 (Procedure Turn Right)

FlightPlanWaypointApproachMode = 1 (Transition)

FlightPlanApproachIsWaypointRunway = 0

Initial Approach

FlightPlanActiveApproachWaypoint = 2 (the Index)

FlightPlanWaypointApproachType = 3 (Procedure Turn Right)

FlightPlanWaypointApproachMode = 1 (Transition)

FlightPlanApproachIsWaypointRunway = 0 1

ApproachSegmentType = 1
Right Turn

Initial Approach Segment

FlightPlanWaypointApproach Leg

Sub-Segment Type Mode Altitude Target Course Distance

Outbound 3 1 3500 ft N/A (0') 12.68 Begins at Initial Approach Fix (IAF) - HOVER

45° Turn 3 1 3500 ft N/A (0') 328° 2.87 328° = FlightPlanWaypointApproachCourse

180° Turn 3 1 3500 ft N/A (0') 4.30 Right Turn. Note: ApproachSegmentType =1

45° Intercept 3 1 3500 ft N/A (0') 0.13

Inbound 3 1 3500 ft N/A (0') 1.37 Ends at Intermed. Fix (IF) or Inbound to FAF

21.35 nm :FlightPlanWaypointApproachLegDistance

2 Index2 Index

 190

FlightPlanWaypointApproachIndex 3 and 4:

HOVER
(FAF)

CF19RCF19R

34

Intermediate Approach

FlightPlanActiveApproachWaypoint = 3 and 4 (the Index)

FlightPlanWaypointApproachType = 1 (Fix)

FlightPlanWaypointApproachMode = 2 (Final)

FlightPlanApproachIsWaypointRunway = 0

6.28 8.91

Intermediate Approach Segment 1

FlightPlanWaypointApproach Leg

Segment Type Mode Altitude Target Course Distance

Intermediate - 1 1 2 3500 ft N/A (0') 198° 8.91 Begins at Intermed. Fix (IF) or Inbound to FAF

8.91 nm :FlightPlanWaypointApproachLegDistance

Intermediate Approach Segment 2

FlightPlanWaypointApproach Leg

Segment Type Mode Altitude Target Course Distance

Intermediate - 2 1 2 3000 ft N/A (0') 193° 6.28 Ends at Final Approach Fix (FAF)

6.28 nm :FlightPlanWaypointApproachLegDistance

3 Index3 Index

4 Index4 Index

FlightPlanWaypointApproachIndex 5:

Final Approach

HOVER
(FAF)
HOVER
(FAF)

5

FlightPlanActiveApproachWaypoint = 5 (the Index)

FlightPlanWaypointApproachType = 1 (Fix)

FlightPlanWaypointApproachMode = 2 (Final)

FlightPlanApproachIsWaypointRunway = 1

RW19R
(MAP*)

4.85

* The Missed Approach Point

Final Approach Segment

FlightPlanWaypointApproach Leg

Segment Type Mode Altitude Target Course Distance

Final 1 2 1382 ft N/A (0') 193° 4.85 Final Approach. Ends at MAP or Landing

4.85 nm :FlightPlanWaypointApproachLegDistance

5 Index5 Index

 191

FlightPlanWaypointApproachIndex 6 and 7:

Missed Approach

FlightPlanActiveApproachWaypoint = 6 (the Index)

FlightPlanWaypointApproachType = 9 (Altitude)

FlightPlanWaypointApproachMode = 3 (Missed)

FlightPlanApproachIsWaypointRunway = 0

ICT
(MAHWP)

FlightPlanActiveApproachWaypoint = 7 (the Index)

FlightPlanWaypointApproachType = 1 (Fix)

FlightPlanWaypointApproachMode = 3 (Missed)

FlightPlanApproachIsWaypointRunway = 0

6

7

5.30

10.33

3.48

RW19R
(MAP)

1

ApproachSegmentType = 1
Right Turn

Missed Approach Climb-Out Segment

FlightPlanWaypointApproach Leg

Segment Type Mode Altitude Target Course Distance

Straight Climb-out 9 3 3500 ft 3500 ft 193° 5.30 Straight climb to Target altitude

5.30 nm :FlightPlanWaypointApproachLegDistance

Missed Approach Holding Turn Segment

FlightPlanWaypointApproach Leg

Sub-Segment Type Mode Altitude Target Course Distance

Turn to Holding Fix 1 3 3500 ft 3500 ft 344° 3.48 Right turn toward Holding Fix. ApproachSegmentType =1

Direct to Holding Fix 1 3 3500 ft 3500 ft 10.33 Direct to Holding Fix.

13.81 nm :FlightPlanWaypointApproachLegDistance

6 Index6 Index

7 Index7 Index

FlightPlanWaypointApproachIndex 8:

4.304.30

Holding Pattern

8

4.30
ICT

2.87

2.87

FlightPlanActiveApproachWaypoint = 8 (the Index)

FlightPlanWaypointApproachType = 6 (Hold Left)

FlightPlanWaypointApproachMode = 3 (Missed)

FlightPlanApproachIsWaypointRunway = 0

180°

360°

2
ApproachSegmentType = 2
Left Turn

Holding Pattern Segment

FlightPlanWaypointApproach Leg

Sub-Segment Type Mode Altitude Target Course Distance

180° Turn North 6 3 3500 ft N/A (0') 4.30 Begins at MAHWP. ApproachSegmentType = 2

North leg 6 3 3500 ft N/A (0') 2.87

180° Turn South 6 3 3500 ft N/A (0') 4.30 ApproachSegmentType = 2

South Leg 6 3 3500 ft N/A (0') 180° 2.87 Ends at Missed Appr. Holding Waypoint (MAHWP)

14.34 nm :FlightPlanWaypointApproachLegDistance

8 Index8 Index

 192

SUB-SEGMENT LENGTH

SUB-SEGMENT LENGTH vs STALL SPEED
(KICT ILS 19R, Kansas, USA)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

50 60 70 80 90 100 110 120

Flaps Up Stall Speed (kts)

S
u

b
-S

e
g

m
e

n
t

L
e

n
g

th
 (

n
m

)

Init Appr Outbound
Init Appr 45 Turn
Init Appr 180 Turn
Init Appr Inbound
Intermed Appr 1
MA Turn To HLD
MA Direct To HLD

The length of some approach sub-segments varies according to the
flaps_up_stall_speed specified in the aircraft.cfg file. fs9gps does this to accommodate
the greater turning radius required as approach speeds increase.

The example above shows various sub-segment lengths associated with the KICT
ILS19R Approach. The sub-segment names follow those used in the examples found in
“DISSECTING THE KICT ILS19R APPROACH SEGMENTS”.

Note that the turning sub-segment (e.g., � Init Appr 180 Turn and + MA Turn To HLD)
lengths increase with stall speed, while some of the straight sub-segments (e.g., � Init
Appr Outbound and � MA Direct To HLD) decrease. The decrease is necessary to keep
the overall procedure roughly the same size regardless of stall speed, and, in the case of
a Procedure Turn, to try to keep the aircraft within the Manuevering Area. In the case
of at least KICT ILS19R used as an example in this chapter, fs9gps does not comply with
the requirement to complete the Procedure Turn within 15 NMiles of the IAF. The Initial
Approach Outbound Leg sub-segment is too long.

Other segments and some sub-segments are geographically fixed and do not vary by
aircraft stall speed. KICT ILS19R examples include the Approach Transition,
Intermediate Approach “2”, Final Approach, and Missed Approach Straight Climb-out
segments.

 193

FLY-BY vs. FLY-OVER WAYPOINTS

Does fs9gps distinguish between Fly-By and Fly-Over Waypoints? Technically, no. If
you stretch it, perhaps, but I think only to the extent that it distinguishes between En
Route and Approach Waypoints.

Fly-Over Waypoints are usually associated with RNAV procedures, SIDs and STARs. I
haven’t studied enough fs9gps RNAV approaches to say if fs9gps treats RNAV Fly-over
waypoints differently than RNAV Fly-By waypoints, but I suspect not.

However, I can say this much: the Turn Anticipation Time of Approach Waypoints,
which include the typical Fly-Over Waypoints Missed Approach Point and Holding Pattern
Fix, is less than that of En Route Waypoints, as shown in the chart below.

TURN ANTICIPATION TIMES

5.0

10.0

15.0

20.0

25.0

90 110 130 150 170 190 210

Ground Speed (knots)

T
u
rn

 A
n
ti
ci

p
at

io
n
 T

im
e
 (

se
c)

En Route Waypoints

Approach Waypoints

En Route Waypoints

Approach Waypoints

The smaller times result in more precise turns in the Approach phase when the aircraft
should be traveling at approach rather than cruise airspeeds. So, closer tolerance on
the Fly-Over Waypoints is part of the package.

 194

TURN ANTICIPATION vs. AMOUNT OF TURN

Does the amount of turn (number of degrees turned) influence Turn Anticipation?
Apparently not.

The chart below plots Turn Anticipation Time against Amount of Turn at two different
Ground Speeds. The amount of turn has no impact on Turn Anticipation Time.

TURN ANTICIPATION vs AMOUNT of TURN

10.0

12.0

14.0

16.0

18.0

20.0

22.0

0 20 40 60 80 100 120

Amount of Turn (degrees)

W
a
yp

o
in

tE
st

im
a
te

d
T
im

e
R
e
m

a
in

in
g
 (

se
c)

189 kts Ground Speed

145 kts Ground Speed

189 kts Ground Speed

145 kts Ground Speed

It’s straight-forward for fs9gps to calculate remaining time to the next waypoint, but it
might be a little more involved to adjust Turn Anticipation Time for the amount of turn
ahead.

Most real-world Turn Anticipation Distance algorithms and rules of thumb are based on
amount of turn, true airspeed, and bank angle. FS9’s world is simpler.

 195

Facility Group

The Facility Data Group provides a convenient way to access limited, common facility
information without the need to transfer into specific Waypoint Data Groups for it. Like
the Waypoint Data Groups, entry into the Facility Group is by means of the ICAO; the
full ICAO is always the passport within the fs9gps module. There are no indexed
variables within the Facility Data Group.

As one example of the usefulness of the Facility Group, consider the results of an ICAO
Search of Ident = ‘CI’ using IcaoSearchStartCursor = ‘VNW’:

7 ICAO’s are returned (IcaoSearchMatchedIcaosNumber = 7) with a mix of VOR, NDB,
and Waypoint facilities. Ahead of time, the user may not know what type of facility
might be returned by the ICAO Search. Consequently, if common information like
Latitude and Longitude of a selected facility is needed, then the following ICAO
transfers,

(L:ICAO_Index_Selected, enum) (>@c:IcaoSearchMatche dIcao)

(@c:IcaoSearchCurrentIcao) (>@c:WaypointAirportIcao)

(@c:IcaoSearchCurrentIcao) (>@c:WaypointVorIcao)

(@c:IcaoSearchCurrentIcao) (>@c:WaypointVorIcao)

(@c:IcaoSearchCurrentIcao) (>@c:WaypointIntersectio nIcao)

followed by,

(@c:WaypointAirportLatitude, degrees)

(@c:WaypointAirportLongitude, degrees)

(@c:WaypointVorLatitude, degrees)

(@c:WaypointVorLongitude, degrees)

(@c:WaypointVorLatitude, degrees)

(@c:WaypointVorLongitude, degrees)

(@c:WaypointIntersectionLatitude, degrees)

(@c:WaypointIntersectionLongitude, degrees)

 196

could be used to cover all the bases.

Alternatively, the much simpler Facility Data Group could be used instead:

(L:ICAO_Index_Selected, enum) (>@c:IcaoSearchMatche dIcao)

(@c:IcaoSearchCurrentIcao) (>@c:FacilityIcao)

(@c:FacilityLatitude, degrees)

(@c:FacilityLongitude, degrees)

No matter if the Ident belongs to an Airport, VOR, VOR, Intersection, or Runway,
FacilityICAO can be used to obtain to certain, limited information.

The Facility Group Variables:

� FacilityICAO (string) [Get, Set]

The ICAO of the facility.

� FacilityCode (string) [Get]

FacilityCode is a single letter string representing Facility type:

• A = Airport

• V = VOR / ILS / LOC

• N = VOR

• W = Waypoint / Intersection

• M = Marker

• R = Runway

Note that no ‘M’ Marker facilities appear to exist in the fs9gps database.

� FacilityIdent (string) [Get]

The one to five letter Ident of the Facility.

� FacilityValid (bool) [Get]

FacilityValid is a check of the ICAO passed to FacilityICAO. If the ICAO is a valid fs9gps
ICAO, FacilityValid returns 1, otherwise, 0. In the gps_500 gauge, FacilityValid is used
to check for a valid ICAO before allowing certain calculations and subsequent gauge
display to occur (gps_500 line 3105 for example).

 197

� FacilityName (string) [Get]

The name of the facility. The International Airport in Jakarta, Indonesia (Ident = WIII)
is “Soekarno-Hatta Intl”, for example.

� FacilityCity (string) [Get]

FacilityCity returns the City Name for Airport Facilities. Only Airports have a City Name
in fs9gps; FacilityCity for VOR, VOR, and Intersections is a blank string in fs9gps.
Runway Waypoints (part of Approach procedures and not included in the
WaypointAirport Group) do not have City Names but do have ICAOs with a Region Code.

In North America, FacilityCity returns a string adding State / Province:
City Name, State / Province.

Finally, for some but not all VORs, a City Name appears in parentheses as part of the
FacilityName (e.g., “HI” VOR = ABATE (PORTLAND)).

� FacilityRegion (string) [Get]

FacilityRegion returns the two letter Region Code. Region Codes don’t exist for Airports.

� FacilityLatitude
� FacilityLongitude (degrees, radians) [Get]

Latitude and Longitude of the Facility.

� FacilityMagneticVariation (degrees) [Get]

FacilityMagneticVariation is the compass
direction of true north.

In this example, A:GPS MAGVAR and
A:MGVAR would equal 15°(15E).

To derive the magnetic course from a
gps var that returns true bearing (which
is mostly the case) subtract A:MAGVAR
from the true bearing.

N

S

E

W

True North

FacilityMagneticVariation = 345°

 198

GeoCalc Group

The GeoCalc Group is fs9gps’s spherical geometry calculator, determining distance and
bearing from latitude and longitude pairs, or extrapolating latitude and longitude from
distance and bearing.

GeoCalc calculations are all performed within the same gauge update cycle. GeoCalc
does not extract information from the fs9gps database, so there is no need to add code
to skip cycles waiting on GeoCalc results.

� GeoCalcLatitude1
� GeoCalcLongitude1 (degrees or radians) [Get, Set]

The latitude and longitude of reference point 1. The units of Lat/Lon can be degrees
(formatted +/-ddd.dddd where S16 degrees 30 minutes would be written as -16.5000)
or radians (d.dddd). Typically, the current aircraft location is set as Latitude1 and
Longitude1 within an <Update> section:

(A:PLANE LATITUDE, degrees) (>@c:GeoCalcLatitude1, degrees)

(A:PLANE LONGITUDE, degrees) (>@c:GeoCalcLongitude1 , degrees)

A reminder about Units: GPS variables are sometimes coded without indicating Units,
for example, (C:fs9gps:NearestVorCurrentLine) . This usually will not cause

difficulty when the Units are either enum or string, as many gps variables are.
However, it is quite important to remember Units for gps variables that are not enum or
string, such as degrees, feet, knots, nmiles, MHz, etc. variables.

� GeoCalcLatitude2
� GeoCalcLongitude2 (degrees or radians) [Get, Set]

The latitude and longitude of reference point 2.

� GeoCalcAzimuth1 (degrees) [Get, Set]

The bearing (true) from the reference point 1 (GeoCalcLatitude1, GeoCalcLongitude1) to
reference point 2 (GeoCalcLatitude2, GeoCalcLongitude2).

� GeoCalcAzimuth2 (degrees) [Get, Set]

This variable does not appear to function correctly in fs9gps.dll. Azimuth can be set, but
it does not seem to work with ExtrapolationLatitude, Longitude.

 199

� GeoCalcLength (nmiles) [Get, Set]

GeoCalcLength is a distance from reference point 1. It is used together with
GeoCalcAzimuth1 to calculate ExtrapolationLatitude and ExtrapolationLongitude.
GeoCalcDistance is not the variable to be used for this.

� GeoCalcBearing (degrees) [Get]

GeoCalcBearing is the direction (true) from point 1 defined by GeoCalcLatitude1,
GeoCalcLongitude1 to point 2 defined by GeoCalcLatitude2, GeoCalcLongitude2.

� GeoCalcDistance (nmiles) [Get]

GeoCalcDistance is the Great Circle distance between two points defined by
GeoCalcLatitude1, GeoCalcLongitude1 and GeoCalcLatitude2, GeoCalcLongitude2. I
believe it’s based on a spherical law of cosines formula rather than Haversine, but I
cannot tell which. With Latitude and Longitude expressed in radians, the speherical
law of cosines formula is:

Distance =

R* arccos[sin(Lat1)*sin(Lat2)+cos(Lat1)*cos(Lat2)*cos(Lon2-Lon1)]

GeoCalcDistance is not slant line distance like DME distance. When flying directly over a
point at an elevation 1 nmile above it, GeoCalcDistance is 0.0 and DME Distance is 1.0.
GeoCalcDistance does not consider aircraft altitude or facility elevation and appears to
be a sea level measurement with the following assumptions (R is the average Earth
radius):

• R = 3438.1158 nautical miles, or

• R = 6367.3902 kilometers, or

• R = 3956.5128 statute miles

• Lat1, Lat2, Lon1, Lon2 = GeoCalcLatitude1 & 2,
GeoCalcLongitude1 & 2 expressed in radians

If Latitude and Longitude values are expressed in degrees, then the degrees-to-radians
conversion must be included in the calculation. The Great Circle Distance Formula using
decimal degrees becomes:

Distance =

R*arccos[sin(Lat1/57.2958)*sin(Lat2/57.2958)+cos(Lat1/57.2958)

*cos(Lat2/57.2958)*cos(Lon2/57.2958-Lon1/57.2958)]

 200

� GeoCalcIsIntersect (bool) [Get]

I have not been able to decipher GeoCalcIsIntersect. As far as I can tell, it always
returns value=1, and I have not yet been able to cause it to be 0, or any other value.
Although GeoCalcIsIntersect is included in the gps.dll module, it’s not used in the
gps_500 gauge xml code and may not be a working variable.

� GeoCalcIntersectionLatitude (degrees) [Get]

Likewise, GeoCalcIntersectionLatitude is a confusing variable. As far as I can tell, it
always simply returns GeoCalcLatitude1. With no example in the gps_500 gauge, the
GeoCalcIntersection variables remain an enigma. But I note Susan Ashlock’s warning
that variables not used in the GPS may not work at all. If GeoCalcIntersection really is
functional, I would certainly like to find out how it is used and what it returns.

� GeoCalcIntersectionLongitude

No such variable exists in the gps.dll module. I include it here only for those (like me,
initially) who suspect that it may exist because GeoCalcIntersectionLatitude is listed
twice in the SDK, leading one to wonder if the second instance is a typo and Longitude
intended instead. At any rate, GeoCalcIsIntersect and GeoCalcIntersectionLatitude do
not appear to be implemented in fs9gps in the first place.

Perhaps the original intent was for IntersectionLatitude and Longitude to represent the
coordinates of two intersecting radials defined by GeoCalcLatitude1, Longitude1,
Azimuth1, Length1, and GeoCalcLatitude2, Longitude2, Azimuth2, Length2. However,
there is only one Length variable, not two. The GeoCalcIntersection variables may not
function properly at all.

If the reader is interested, math formulas for the intersection of two radials and other
aviation formulae can be found in this excellent and well known reference:

“Aviation Formulary V1.46” by Ed Williams

http://williams.best.vwh.net/avform.htm

� GeoCalcExtrapolationLatitude
� GeoCalcExtrapolationLongitude (degrees) [Get]

GeoCalcExtrapolationLatitude and GeoCalcExtrapolationLongitude is the computed Lat &
Lon of a point located GeoCalcLength nmiles at GeoCalcAzimuth1 degrees (true) from
reference point 1 (GeoCalcLatitude1, GeoCalcLongitude1).

Note that GeoCalcAzimuth2 should not be used. Even when a non-zero degree bearing
value is entered into GeoCalcAzimuth2, the resulting GeoCalcExtrapolation Lat and Lon

 201

will turn out to be due north of point 1, meaning that GeoCalcAzimuth2 is actually zero,
regardless of input – in other words, it is not an active variable in FS9, just zero values.

Additionally, the reference point must always be GeoCalcLatitude1 and
GeoCalcLongitude1. Using GeoCalcLatitude2 and GeoCalcLongitude2 will not work.

� GeoCalcCrossTrack (nmiles) [Get]

The first thing to note is that GeoCalcCrossTrack is not the same as navigational Cross
Track Error. Cross Track Error is the distance the aircraft is from the desired flight path,
measured perpendicular to the desired flight path.

GeoCalcCrossTrack is the distance between GeoCalcLongitude2 and GeoCalcLongitude1,
(Longitude2 minus Longitude1) always measured at GeoCalcLatitude2. See the figure
below.

If Longitude1 is to the west of Longitude2, then CrossTrack is positive distance. If
Longitude1 is eastward of Longitude2, then CrossTrack is negative distance.

Cross Track Error can be accessed using (A:GPS WP CROSSTRK, nmiles) where

aircraft positions left of the desired flight path are positive Cross Track values and right
of the desired flight path are negative. It’s assumed this is a spherical geometry
calculation.

Waypoint 1

GeoCalcLatitude2

GeoCalcLongitude2

D
es

ire
d

fli
gh

t p
at

h

Cross Track Error

(A:GPS WP CROSSTRK, nmiles)

GeoCalcCrossTrack, nmiles

North (true)

Waypoint 0

GeoCalcLatitude1

GeoCalcLongitude1

 202

Data Entry and Working with Strings

Entry, manipulation, and storage of string data are regularly required in use of the gps
module. String data are more complicated to work with than numbers principally
because they are not as easily stored in memory while FS is running. To the point,
L:Vars cannot store strings – only numbers.

This section reviews topics related to string entry, manipulation, and storage (apart from
the methods used in the stock gps_500 Garmin GPS 500 gauge) that are pertinent with
use of the gps module.

Contents of this Chapter:

STRING OPERATORS

ASCII CODE

STRING ENTRY METHODS

� Keyboard Direct Entry

� Mouse Click Entry Using a Keypad Image

CONCATENATION and STRING STORAGE

� 5 characters maximum can be stored in a single L:Var

� Shift Register

� XMLVars – Custom L:Vars

� String Storage Macros

• The macros (12 in all)

• Using the String Storage Macros

OTHER

� Storage in internal registers

� LOGGER (XML > HDD > XML)

� String Storage v2.0.1

 203

STRING OPERATORS

String operators commonly used with gps XML script:

� chr – converts an ascii number to a character. Example: 65 chr returns ‘A’. Only

one number and one character at a time.

� ord – converts a character to an ascii number. Example: 'A' ord returns 65.

Only one character and one number at a time.

� slen – String Length, number of characters. Example: 'ABC D' slen returns 5.

� scat – concatenates strings. Examples:

'A' 'B' scat yields the string AB.

'A ' (C:fs9gps:FlightPlanDestinationAirportIde nt) scat yields

the ICAO of the destination airport. (That’s ‘A’ followed by six spaces concatenated with
the destination airport Ident).

� ssub – extracts a portion of a string. ssub requires three arguments. Example:

'ABCD123' 2 4 ssub returns CD12.

The first argument is the string to be evaluated.

The second argument, 2, indicates the position in the string to start looking. The first
character is always position 0, so, 2 means start at C.

The third argument indicates the number of characters to return.

 204

ASCII CODE

ASCII, abbreviated from American Standard Code for Information Interchange, is a
character-encoding scheme. ‘Originally based on the English alphabet, it encodes
specified characters into 7-bit binary integers’ as shown by the ASCII chart below
(Google search definition).

Ascii Ascii Ascii Ascii Ascii
Char Number Char Number Char Number Char Number Char Number

Null 0 3 51 C 67 L 76 U 85

Space 32 4 52 D 68 M 77 V 86

+ 43 5 53 E 69 N 78 W 87

, 44 6 54 F 70 O 79 X 88

- 45 7 55 G 71 P 80 Y 89

. 46 8 56 H 72 Q 81 Z 90

0 48 9 57 I 73 R 82

1 49 A 65 J 74 S 83

2 50 B 66 K 75 T 84

Key = "Ascii" returns only Upper Case letters, numbers, and special characters "space" "+" "," "-" and "."

Key = "Alphanumeric" returns only Upper Case letters, numbers, and "space"

Keystroke entry must be made using lower case letters only for both "Acsii" and "Alphanumeric"

As an example, to store the letter ‘W’ into an L:Var, it must first be converted to its ascii
code number equivalent, and then the ascii code is stored.

'W' odr (>L:Letter_W, enum). Where, (L:Letter_W, enum) stores the

number 87.

STRING ENTRY METHODS

� Keyboard Direct Entry

When ICAO and Name searches are initiated or when file names are entered for hard
drive storage using LOGGER, it may be more convenient to use the computer’s keyboard
to enter strings rather than use of a mouse to click knob or keyboard images in your
gauge to produce string and number entry.

The example Keyboard Direct Entry XML code shown below will accept a single
character key stroke entry and store it into IcaoSearchStartCursor.

 205

1 <Keys>
2 <On Key="Alphanumeric" >
3 <Visible> (L:KeyEntry, bool) 1 == </Visible>
4 (M:Key) chr (>C:fs9gps:IcaoSearchStartCursor)
5 </On>
6 </Keys>

• Lines 1 and 6: The Keyboard Direct Entry code must be placed within a <Keys>
section. <Keys> is a stand alone section that should not be placed within
<Element>, <Mouse>, or <Update> blocks.

• Line 2: The choices are Key="Alphanumeric" , Key="Ascii" ,

or Key="Backspace"

Using Alphanumeric, lower case alphabet letters, space, and number 0 through 9
keystrokes are accepted as keyboard entry. These produce upper case letters,
space and numbers 0 through 9. Shift+letter combinations are not accepted.
Caps Lock letters are accepted and produce upper case letters. As an example,
typing a lower case “a” produces ascii decimal value 65, which is the ascii value
of an upper case “A”. Alphanumeric is a good choice for ICAOSearchStartCursor
because only alphabet letters “V”, “A”, “N”, “W”, and “X” are valid entries for
StartCursor. Because Idents contain no special characters, Alphanumeric is also
a good choice for IcaoSearchEnterChar.

Ascii is similar to Alphanumeric except that characters “+” “-“ “,” and “.” (plus,
minus, comma and period/decimal point) are also accepted. If a gauge requires
latitude and longitude entry, then Ascii is the appropriate choice because it
provides the ability to enter the decimal point. Additionally, note that the stock
FS9 gps_500 gauge uses Ascii for NameSearch entry (see line 3947).

• Line 3: The <Visible> tag. This is an especially important toggle that enables or

disables keyboard entry via the M:Key instruction. Only when the <Visible>
condition is true will code lines that follow the <Visible> statement such as the
M:Key line be executed.

o The visibility condition, (L:KeyEntry, bool) 1 == , is usually

established by code elsewhere in the gauge, for example, by means of a
mouse click that opens a screen page that requires alphanumeric input.

o If the <Visible> statement is omitted, line 4 will be executed whenever
there is keyboard entry. While M:Key is enabled, it traps all keyboard
entry and you lose the use of normal keyboard assignments such as “G”
for Landing Gear toggle.

o As a consequence, you need the ability to turn on and off Line 4 using
<Visible>, limiting its use only to the specific situation where you want to
enable M:Key direct keyboard entry.

• Line 4: (M:Key) traps the keyboard entry result associated with each individual
keystroke. When a keystroke occurs while the <Visible> condition is “true”,

 206

M:Key returns the ascii code number that is mapped to the specific keyboard
character that was pressed. A keyboard does not generate a string character per
se, rather, it yields the ascii code equivalent of each keystroke. Refer to the Ascii
table above.

In the example above, if Line 4 was written

(M:Key) chr (>L:Value, enum)

and the letter “W” was typed, then (L:Value, enum) would return 0 because an L:Var
cannot store a string.

Alternatively, if Line 4 was written

(M:Key) (>L:Value, enum)

and the letter ‘W’ was typed, then (L:Value, enum) would return 87.

� Mouse Click Entry Using a Keypad Image

Each character is assigned a mouse click area in the gauge as shown by the yellow
shading below. When the key image is clicked, the associated ascii number equivalent
should be generated and stored into an L:Var or the key character entered directly into
a fs9gps string variable that requires input.

The ascii code is returned using the XML ord string operator for all characters, both
string and number. The example XML shows the <Mouse> instructions for characters
“4”, and “C”.

 207

<Area Left="370" Top="106" Width="24" Height="33">
 <Cursor Type="Hand"/>
 <Click>
 '4' ord (>L:MouseEntry, enum)
 </Click>
</Area>

<Area Left="121" Top="257" Width="35" Height="29">
 <Cursor Type="Hand"/>
 <Click>
 'C' ord (>L:MouseEntry, enum)
 </Click>
</Area>

If keypad image entry is limited to IcaoSearch and NameSearch, the ‘C’ mouse click
might look something like:

<Area Left="121" Top="257" Width="35" Height="29">
 <Cursor Type="Hand"/>
 <Click>
 <Visible>(L:IcaoSearchEntry, bool)</Visible>
 'C' (>C:fs9gps:IcaoSearchEnterChar)

 <Visible>(L:NameSearchEntry, bool)</Visible>
 'C' (>C:fs9gps:NameSearchEnterChar)
 </Click>
</Area>

 208

CONCATENATION and STRING STORAGE

Name and Ident input require that individual keystrokes be combined (concatenated) to
form a word and saved. The gps module does this automatically for IcaoSearch and
NameSearch operations which is all that the stock gps_500 gauge needs. Refer to
discussions in the ICAO Search Group and Name Search Group chapters.

However, if you are building a gauge that requires entry of latitude and longitude, or file
names of saved flight plans for example, or any other strings, then you will probably
need the ability to concatenate individual key input and/or save the string in memory.
There are a few ways to do this.

� 5 characters maximum can be stored in a single L:Var

Ascii numbers representing individual characters can be aggregated and stored into a
single L:Var, but the maximum is 5 characters only per L:Var. This is a good solution for
an Ident, but insufficient for an ICAO or most names (file names, airport names, etc.).

As one example, the Ident string CF03R could be stored in an L:Var as follows:

Ascii
Char Number

C 67

F 70

0 48 6770485182 (>L:Ident, enum)

3 51

R 82

And ssub used to extract each character when the Ident is needed.

� Shift Register

Use of a shift register is the traditional XML method used to store multiple alphanumeric
keystroke entries.

The direct keyboard entry example below accommodates typing of up to 5 keystrokes,
storing the ascii code value of each individual character typed into a separate L:Var,
shifting the previous L:Var 'to the left' when the next character is typed. This technique
can store as many individual keystroke entries as the user wants as long as a sufficient
number of separate L:Vars are included in the shift register script to begin with.

 209

1 <Keys>
2 <On Key="Ascii" >
3 <Visible> (L:KeyEntry, bool) 1 == </Visible>
4 (L:Entry39_4,enum) (>L:Entry39_5,enum)
5 (L:Entry39_3,enum) (>L:Entry39_4,enum)
6 (L:Entry39_2,enum) (>L:Entry39_3,enum)
7 (L:Entry39_1,enum) (>L:Entry39_2,enum)
8 (M:Key) (>L:Entry39_1,enum)
9 </On>
10 </Keys>

• Lines 1-3: As before.

• Lines 4-7: The “shift register”. Before converting the current key entry to ascii
and storing that number into L:Entry39_1 (Line 8), the ascii value of the previous
keystroke entry which was initially stored in L:Entry39_1, is stored into
L:Entry39_2 (Line 7). Preceding that (Line 6), the value in L:Entry39_2 is shifted
up to (stored into) L:Entry39_3, and so forth. This is done because M:Key is
always stored into L:Entry39_1 (Line 8). After 5 keystrokes, the ascii value of
first keystroke entered will end up being stored in L:Entry39_5.

• Line 8: M:key returns the ascii value of the current keystroke and that is stored
into L:Entry39_1.

• Before using a shift register to store keyboard entry ascii values, you will need to
first “clear” all of the old L:Var values by storing a zero (which is the ascii null
value) into each of the L:Vars, Entry39_1 through Entry39_5.

• A drawback to traditional shift register code is that it can get quite long when
accommodating lengthy strings and multiple string variable names.

To display what was just typed using an <Element>:

1 <Element Name="Entry Box 39 >
2 <Position X="775" Y="86" />
3 <FormattedText X="101" Y="20" Adjust ="left"
4 Font ="Courier New" Color ="#101010" FontSize ="10"
5 LineSpacing ="10" Bright ="Yes" >
6 <String>
7 %(
8 (L:Entry39_5,enum) chr
9 (L:Entry39_4,enum) chr scat
10 (L:Entry39_3,enum) chr scat
11 (L:Entry39_2,enum) chr scat
12 (L:Entry39_1,enum) chr scat
13)%!s!
14 </String>
15 </FormattedText>
16 </Element>

 210

The following shows results of typing “a”, “b”, “space”, “Shift+c”, “d”, “.”, “5”, “f”
using the shift register code above:

Key = "Alphanumeric"

L:Vars

Entry # Keystroke Entry39_1 Entry39_2 Entry39_3 Entry39_4 Entry39_5 Concatenated string

1 a 65 0 0 0 0 A

2 b 66 65 0 0 0 AB

3 space 32 66 65 0 0 AB then "space"

4 Shift+c 32 66 65 0 0 AB then "space"

5 d 68 32 66 65 0 AB D

6 . 68 32 66 65 0 AB D

7 5 53 68 32 66 65 AB D5

8 f 70 53 68 32 66 B D5F

Key = "Ascii"

L:Vars

Entry # Keystroke Entry39_1 Entry39_2 Entry39_3 Entry39_4 Entry39_5 Concatenated string

1 a 65 0 0 0 0 A

2 b 66 65 0 0 0 AB

3 space 32 66 65 0 0 AB then "space"

4 Shift+c 32 66 65 0 0 AB then "space"

5 d 68 32 66 65 0 AB D

6 . 46 68 32 66 65 AB D.

7 5 53 46 68 32 66 B D.5

8 f 70 53 46 68 32 D.5F

� XMLVars – Custom L:Vars

Tom Aguilo’s XMLTools XML enhancement module includes the powerful XMLVars class
that provides an XML solution for storing strings up to 128 characters in length. Like
L:Vars, XMLVars can be read by any gauge in an aircraft panel, can have any name, can
hold numeric values of any kind but, unlike L:Vars, can also store strings.

Additionally, because of XMLVars flexibility of naming variables, it can handle standard
multidimensional array-style manipulation of data. Data arrays introduce a powerful
capability not possible using native L:Vars unless a complex group of macros is applied.
XMLTools can be freely downloaded here:

http://fsdeveloper.com/forum/showthread.php?t=207518

XMLTools requires installation of the XMLTools.dll module. Complete installation and
User Guide instructions are provided.

Some examples of XMLVars use:

 211

 212

Lines 1 – 22: Macros associated with XMLVars. My preference is to write a macro
whose name is the action performed by each XMLVar function. It is easier for me to
read my script that way.

Lines 26-30: A macro that is performed only when the gauge first loads. In this case,
it creates three XMLVar variable names.

Lines 32-34: Macro used to concatenate and store a string entered by mouse click of
a keypad image in a gauge.

Lines 36-38: A macro that clears ‘CurrentRwy’ XMLVar by entering a null value ('')
into it.

Lines 41-45: Gauge initiation sequence. Such a sequence is run one time only –
immediately after the gauge initially loads.

Lines 48-53: Action taken when the “Q” key is clicked on the keypad image.

Lines 55-60: Using XMLVars with keyboard entry. The XMLVar string named ‘Name1’
is read, the keystroke is converted to a character, concatenated, and re-stored as
‘Name1’.

In my opinion, every serious XML gauge developer, especially anyone interested in
working with the complex gps module, should consider installing the XMLTools suite.

Tom provides thorough installation instructions and user documentation.

 213

� String Storage Macros

XML String Storage macros written by Robbie McElrath offer another method to store
strings. They can be used to enter, concatenate, store and read strings up to 64
characters long in a "single" L:Var. The XML macros and user instructions are provided
below. These macros can be written into the gauge and as such, do not require
separate installation of a .dll module.

Behind the scenes, the macros actually construct sixteen L:Vars containing 4 ascii
characters each by utilizing the ascii hexadecimal value of each character together with
XML's built in Bit Operators (>>, <<, |, &) to keep track of the order.

The user chooses an arbitrary variable name which is attached to the 16 L:Vars as a
prefix, uniquely labeling them (name_[1-4]_[1-4]). The 16 building block L:Vars are
never shown individually, and just one L:Var name (prefix) is entered. Therefore, to the
user, the appearance is that a single L:Var holds a string up to 64 characters long.

All ascii characters except &, / , \ , < , and ' (single quote) can be accommodated.
Backspace and Clear operations are also included.

The macros (5 are ‘Command Macros’, 7 are ‘administrative’)

 214

Using the String Storage Macros

Use of the string storage macros is very simple. There are 5 “command” macros:

1. ReadKB: Read keyboard (or mouse) entry and concatenate

2. Backspace: Backspace one character

3. Clear: Clear the string store L:Var values

4. ToString: Convert the string store L:Var values to a string

5. FromString: Convert a string into the L:Var values

1. Converting String Data Into An L:Var

1.1 Entering one character at a time such as in direct keyboard entry, automatically
concatenating as you type. The use of <On Key="Ascii"> will enable keyboard entry of
"-" and "." as well as all the other alphanumerics:

 215

• KEYBOARD DIRECT ENTRY XML:

<On Key="Ascii"> <!-- Keyboard Entry -->
 <Visible> (L:KeyboardEntryEnabled, bool)</Visible >
 @ReadKB(L: StringLVar1)
</On>

<On Key="Backspace"> <!-- Backspace -->
 <Visible> (L:KeyboardEntryEnabled, bool) </Visible >
 @Backspace(L: StringLVar1)
</On>

The user needs to choose an arbitrary L:Var name, such as StringLVar1. No units. The
macros will take care of the units.

• MOUSE CLICK ENTRY XML:

Entering data by mouse clicking on an FMS keypad image in your gauge is a simple
variation. You need to adjust the M:Key reference in the ReadKB macro. The last line
(12) of the ReadKB macro should read @Read4(@1_1, L:LKey) rather than
@Read4(@1_1, M:Key).

Then, in the <Mouse> section, for a mouse click on the letter "A", for example:

<Area Left="25" Top="220" Width="15" Height="15">
 <Cursor Type="Hand"/>
 <Click>
 'A' ord (>L:LKey, enum)
 @ReadKB(L:StringLVar1)
 </Click>
</Area>

1.2 Entering a string of characters all at once, by code . If you want to store something
like:

'VED BAM' , or (A:NAV1 IDENT, string) , then the following can be used:

The XML:

@Clear(L:BAM_VOR_ICAO)
'VED BAM' @FromString(L:BAM_VOR_ICAO)

or

@Clear(L:Nav1Name)
(A:NAV1 IDENT, string) @FromString(L:Nav1Name)

 216

2. Displaying the 'String' L:Var:

The XML:

<String>%(@ToString(L:StringLVar1))%!s!</String>

3. Passing a 'String' L:Var:

The XML:

@ToString(L:BAM_VOR_ICAO) (>C:fs9gps:WaypointVorIca o)

4. Clearing the 'String' L:Var:

The XML:

@Clear(L:StringLVar1)

OTHER

� Storage in internal registers

Strings can be stored in the internal memory registers (s0 …s49) with the provision that
the registers are cleared each gauge update cycle.

� LOGGER (XML > HDD > XML)

LOGGER is a module written by Robbie McElrath that enables data (number and string)
to be written to and read from a hard drive using XML instructions. LOGGER can be
freely downloaded here:

http://robbiemcelrath.com/fs/logger/about

Additionally, now LOGGER is included as a Class in XMLTools.

� String Storage v2.0.1

Doug Dawson also provides a string storage dll module that can be freely downloaded
here:

http://www.douglassdawson.ca/

 217

<ELEMENT> Display Loops

The <Element> display loop is an xml “must-know” for working with the gps module. It
is covered in the gps_500 xml gauge, in the forums, a few places in this guidebook, and
also covered again in this section.

The following script produces a list of the Nearest VORs extracted from the fs9gps
database in a NearestVor search.

 218

Line:

� 25 – 35 The header lines for the Nearest VOR display list.

� 36 Cycle skipping/delay command. A Nearest search always consumes
multiple gauge update cycles and display of search results cannot begin
until values have been returned. Line 36 delays displaying of the
NearestVor list until the Nearest search has returned values as
evidenced by NearestVorItemsNumber being greater than zero. This
number is then stored into Register #2 which is checked each loop
(Line 48) to see if all VORs have been displayed.

� 37 Condition statement. Used in connection with the cycle skipping
command.

� 38 The value zero is stored into Register #1. “0” is always the value of the
first index line.

� 39 The display loop begins. Variables for an individual VOR are displayed
one VOR at a time / one line at a time based on the current Index
pointer, the value in Register #1.

� 40 Register #1 is loaded into the NearestVor index pointer variable.

� 41 – 47 The NearestVor variables associated with the current Index pointer that
will be displayed all on the same line.

� 48 The “incrementer”. After each VOR variable list is displayed, Register
#1 is incremented by 1 and Register #2 is checked to see if all of the
VOR’s have been displayed.

 219

Panel Reload Gauge

After making changes to XML script in the gauge editing process, the panel must be
refreshed before the edited gauge can function.

One convenient way to accomplish this is to build a simple gauge that executes the
panel re-load event (>K:RELOAD_PANELS).

In FSX, "RELOAD_USER_AIRCRAFT" is used rather than "RELOAD_PANELS" which

works only in FS9.

<Gauge Name="Panel Reload" Version="1.0" >
 <Image Name="Reload.bmp" Bright="Yes" ImageSizes=" 20,20,0,0"/>
 <Mouse>
 <Area Left="0" Top="0" Width="20" Height="20">
 <Cursor Type="Hand"/>
 <Click>
 (A:Fuel weight per gallon, pounds per gallon) 0 ==
 if{ (>K:RELOAD_USER_AIRCRAFT) } // FSX
 els{ (>K:RELOAD_PANELS) } // FS9
 </Click>
 </Area>
 </Mouse>
</Gauge>

Reload.bmp is a 20x20 pixel icon that can be clicked to initiate the panel reload. It
can be positioned anywhere on the screen by using appropriate placement coordinates
in panel.cfg.

Note that the variable (A:Fuel weight per gallon, pounds per gallon) returns 6 in FS9 but
0 in FSX. Thus, it can be used to distinguish between the two sims.

 220

Bugs, Inops, and Issues

Not that there is anyone at MSFT that will do anything about these after ACES demise,
but here is a list of Bugs / Inops / Issues I have run across. Maybe Lockheed Martin has
already taken care of these, plus more.

I recognize that some, perhaps many, have been identified long before now...

Group Variable Bug

FlightPlan FlightPlanIsActiveWaypoint It is not Settable (SDK error)

FlightPlan FlightPlanIsDirectTo It is not Settable (SDK error)

FlightPlan FlightPlanActiveWaypoint It is Settable (SDK error)

FlightPlan FlightPlanNewApproachAddInitialLeg
MSFT ESP web page suggests this may be
Inop (units Unavailable), but it is operational

FlightPlan FlightPlanWaypointFrequency
Value returned is not a valid VOR frequency.
Already noted by MSFT ACES

FlightPlan FlightPlanWaypointMinAltitude Units bug - must specify 'meters' to get feet

FlightPlan FlightPlanApproachSegmentLength

At least in the case of the KICT ILS19R Initial
Approach segment, the sub-segment
outbound from the IAF is too long, causing
the Procedure Turn to exceed the allowable
distance.

FlightPlan FlightPlanWaypointMinAltitude
Database issue - some segments have an
obviously incorrect (too low) MEA, such as 0

FlightPlan FlightPlanWaypointApproachCourse
Some bearings are True but all should be
Magnetic

GeoCalc GeoCalcAzimuth2 Not active in fs9gps

GeoCalc GeoCalcCrossTrack
Maybe not a bug as much as it is quite
misleading

GeoCalc GeoCalcIsIntersect Appears Inop

GeoCalc GeoCalcIntersectionLatitude, Lon Appears Inop

NearestAirspace NearestAirspaceCurrentNearDistance
Incorrectly identifies distance with the far,
'occluded' airspaces

WaypointAirport WaypointAirportRegion
Unnecessary variable. Regions do not exist
for Airports

WaypointAirport WaypointAirportRadarCoverage Inop

WaypointAirport WaypointAirportAirspace Inop

NearestNDB NearestNdbCurrentFilter does not exist

Nearest__ Nearest__MaximumDistance

Especially in large searches, MaximumDistance
is not strictly adhered to. For some reason
apparently having to do with the way the
search algorithm works, some searches return
items 20 to 25% more distant than
MaximumDistance.

WaypointNDB WaypointNdbCity Always returns a blank string

WaypointNDB WaypointNdbWeatherBroadcast Inop

WaypointVOR WaypointVorWeatherBroadcast Inop

WaypointVOR WaypointVorCity Always returns a blank string

WaypointIntersection WaypointIntersectionCity Always returns a blank string

 221

fs9gps Guidebook Updates

v.1.1

 Page Edit

 2 Removed RXP reference

 11 Revised Table Title

 12 Fixed wrong ICAO example

 14 Highlighted the multiple update cycle database operations

 15 Fixed spill over text

 31 Corrected M:Key xml code

 42 Corrected grammar mistake

 54 Removed underline

 79 Corrected statement re: A:PLANE and A:GPS update freq

 81 Corrected MSFT online SDK reference url

 82 Corrected reference to the Garmin GNS 500

 91 Blue text for a gps var

 94 Corrected M:Key xml code

 104 Corrected M:Key xml code

 118 Updated xml I/O remark

 121 Removed errant tab

 157 Changed graphic

 169 Added Flight Plan New Approach Table

v.2.0

 Page Edit

 many Added descriptions of FSX-only variables

 3 Added page on FS9 vs. FSX

 15 Update list of gps operations requiring multiple cycles

 46 Corrected RunwayDirection (True, not Mag)

 49 Updated FrequencyName list

 51 Corrected Runway direction (True, not Mag)

 52 Added RunwayLength and Width graphic

 60 Corrected discussion of WaypointIntersectionNearestVor

 64 Corrected explanation of WaypointNdbMagneticVariation

 69 Corrected explanation of WaypointVorMagneticVariation

 70 Corrected LongestRunway direction (True, not Mag)

 222

 96 Corrected NearestNdbCurrentFrequency variable name

 98 Added NearestAirspaceCurrentLongitude variable

 128 Corrected definition of FlightPlanDepartureLat and Lon

 129 Corrected definition of FlightPlanDestinationLat and Lon

 136 Updated Creating a Flight Plan to mention LOGGER

 138 Added FlightPlanWaypointIdent custom name explanation

 166 Corrected description of FlightPlanWaypointAltitude

 166 Added FlightPlanWaypointIdent custom name explanation

 168 Added FlightPlanWaypointMinAltitude graphic

 181 Corrected list of Approaches into KICT

 199 Updated average Earth radius and formula description

 202 Expanded chapter on Data Entry Working With Strings

 219 Added page on Panel Reload Gauge

v.2.0.1

 Page Edit

 21, 23 v.2.0 had mix of FS9 and FSX. Corrected to just FS9

