

an empirical xml guide

Robert McElrath

July, 2015

LevelVehicles = 1Z Factor = 30 NM

ITrafficInfo:Radius = 20 NM

ITrafficInfo:MaxVehicles = 30

ITrafficInfo:Filter = 80

20 NM

TrackUp = 1

TCAS Overlay

CLASS_C

Airspace Type 4

LevelVehicles = 1Z Factor = 30 NM

ITrafficInfo:Radius = 20 NM

ITrafficInfo:MaxVehicles = 30

ITrafficInfo:Filter = 80

20 NM

TrackUp = 1

TCAS Overlay

CLASS_C

Airspace Type 4

i

 Page FS9 FSX

 1 Introduction

 2 Map Projections

 2 Flight Planner and World Maps

 4 CustomDraw fs9gps:Map

 6 Range (Zoom Factor)

 7 Screen Pixels vs. Gauge Units

 7 Combining XML Objects with CustomDraw Map

 8 Screen pixels vs. Gauge units

 10 Three examples of Panel Background Image Stretch

 13 CustomDraw Map variables

 13 Name=“fs9gps:1:Map”

 13 X="275" Y=“230”

 13 Bright=“1”

 13 Zoom

 14 Latitude

 14 Longitude

 15 Heading

 16 Heading Examples

 17 TrackUp

 17 CenterX

 17 CenterY

 17 SelectedVehicle

 17 TagPosition

 19 Map Object Color Syntax

 19 BackgroundColor

 19 IceColor

 19 WaterColor

 20 ElevationXColor

 21 TerrainShadow

 22 PanVertical

 22 PanHorizontal

 25 PanReset

 25 Priority

 25 MapLoading

 25 UpdateAlways

ii

 26 Number Formats

 26 Hexadecimal Numbers

 26 1) Bit Table

 26 2) Composite Hexadecimal

 27 Decimal Numbers

 27 1) Integer

 27 2) Bool

 27 3) Float

 28 Use of Expressions

 28 String Variables

 29 LayerTerrain

 29 LayerTerrain

 29 DetailLayerTerrain

 29 Example Elevation Colors

 33 � � TextDetailLayerTerrain

 33 ObjectDetailLayerTerrain

 34 � � ColorLayerTerrain

 34 � � TextColorLayerTerrain

 34 Elevation Color Palette Examples

 35 Color Feathering

 36 TerrainShadow Affect on TAWS Colors

 37 LayerBorders

 37 LayerBorders

 37 DetailLayerBorders

 37 � � TextDetailLayerBorders

 37 ObjectDetailLayerBorders

 39 ObjectDetailLayerBorders

 40 ColorLayerBorders

 40 � � TextColorLayerBorders

 40 Borders Example

 41 Borders Example

 42 � LayerGridLines

 43 LayerRangeRings

 43 LayerRangeRings

 43 � DetailLayerRangeRings

 43 � TextDetailLayerRangeRings

iii

 43 ObjectDetailLayerRangeRings

 44 Range Ring Center

 44 Range Ring Center in Multiplayer ATC Radar Gauge

 44 Projection Change at 500,000 Meter Range

 45 RangeRings: TrackUp=0 only

 45 ColorLayerRangeRings

 46 LayerAirports

 46 LayerAirports

 46 DetailLayerAirports

 47 Airport Symbol Orientation

 48 TextDetailLayerAirports

 49 TextDetailLayerAirports Example

 49 ObjectDetailLayerAirports

 49 ObjectDetailLayerAirports Rules

 51 TextColorLayerAirports

 51 ColorLayerAirports

 52 ColorLayerAirportsTowered

 52 ColorLayerAirportsUntowered

 53 LayerVORs

 53 LayerVORs

 53 DetailLayerVORs

 54 TextDetailLayerVORs

 55 � � ObjectDetailLayerVORs

 56 ColorLayerVORs

 56 TextColorLayerVORs

 57 LayerNDBs

 57 LayerNDBs

 57 DetailLayerNDBs

 58 TextDetailLayerNDBs

 58 ObjectDetailLayerNDBs

 59 ColorLayerNDBs

 59 TextColorLayerNDBs

 60 LayerILSs

 60 LayerILSs

 60 DetailLayerILSs

 60 � � TextDetailLayerILSs

iv

 60 ObjectDetailLayerILSs

 61 Localizer Cone Symbol Dimensions

 62 Localizer Course Line Symbol Dimensions

 62 Localizer Orientation

 63 ColorLayerILSs

 63 � � TextColorLayerILSs

 64 LayerIntersections

 64 LayerIntersections

 64 DetailLayerIntersections

 64 TextDetailLayerIntersections

 65 ObjectDetailLayerIntersections

 65 ColorLayerIntersections

 65 ColorLayerIntersectionsEnroute

 65 ColorLayerIntersectionsTerminal

 65 TextColorLayerIntersections

 67 Additional points

 68 LayerAirspaces

 68 LayerAirspaces

 68 DetailLayerAirspaces

 68 � � TextDetailLayerAirspaces

 68 ObjectDetailLayerAirspaces

 69 Airspace Definitions

 69 Center Airspace

 70 Air Traffic Control-Based Airspace Classes

 70 Special Use Airspaces

 71 LayerAirspaces Line Format

 72 Examples of LayerAirspaces

 74 � � ColorLayerAirspaces

 74 � � TextColorLayerAirspaces

 75 LayerFlightPlan

 75 LayerFlightPlan

 75 DetailLayerFlightPlan

 76 � � TextDetailLayerFlightPlan

 76 ObjectDetailLayerFlightPlan

 77 ColorLayerFlightPlan

 78 � � TextColorLayerFlightPlan

 78 FlightPlanLineWidth

v

 79 ActiveColorLayerFlightPlan

 79 PastColorLayerFlightPlan

 80 LayerApproach

 80 LayerApproach

 80 DetailLayerApproach

 82 � � TextDetailLayerApproach

 82 ObjectDetailLayerApproach

 82 � � ColorLayerApproach

 82 � � TextColorLayerApproach

 82 LayerApproachAirport

 82 LayerApproachAproach

 82 LayerApproachTransition

 83 LayerApproachLeg

 84 LayerApproachAircraftSpeed

 85 LayerApproachLineActiveColor

 85 � � LayerApproachLineColor

 85 LayerApproachLineWidth

 86 Other LayerApproach Observations

 87 LayerVehicles

 87 LayerVehicles

 87 DetailLayerVehicles

 89 TextDetailLayerVehicles

 89 ObjectDetailLayerVehicles

 91 ColorLayerVehicles

 91 ColorLayerVehiclesSelected

 91 TextColorLayerVehicles

 92 ITrafficInfo: Nearest Traffic Group

 93 ITrafficInfo:Latitude

 93 ITrafficInfo:Longitude

 93 ITrafficInfo:MaxVehicles

 93 ITrafficInfo:Radius

 93 ITrafficInfo:Filter

 95 Designating the Filter Value

 95 Sleep State

 96 Nearest Traffic Search Example

 100 � ITrafficInfo:SortOrder

 100 ITrafficInfo:CurrentVehicle

vi

 100 ITrafficInfo:SelectedVehicle

 101 ITrafficInfo:SelectedVehicleID

 101 ITrafficInfo:ListSize

 102 ITrafficInfo:CurrentDistance

 102 A Note on Update Frequency

 102 ITrafficInfo:SelectedFlightPlan

 103 ITrafficInfo XML Script Examples

 103 Example 1. Displaying a List of AI Aircraft Information

 106 Example 2. Displaying the Selected Aircraft on the Map

 107 ITrafficInfo:CurrentPlayerName

 107 ITrafficInfo:SelectedPlayerName

 108 LayerAirways

 108 LayerAirways

 108 DetailLayerAirways

 108 TextDetailLayerAirways

 109 ObjectDetailLayerAirways

 109 ColorLayerAirwaysVictor

 109 ColorLayerAirwaysJet

 109 TextColorLayerAirways

 110 TAWS

 110 TAWS = GPWS + FLTA

 111 Terrain Awareness Map

 111 Elevation Color Selection

 113 Yellow Band Must be 1000’ (or Multiples of 1000’)

 113 Color Feathering

 115 Radar Altimeter ElevationXColor Adjustment

 116 Terrain Refresh

 116 LayerTerrain Refresh

 117 Example <Mouse> section – turn TAWS Mode On and Off

 118 TAWSClose macro

 119 Example <Update> section – Terrain Refresh

 120 Example <Update> section – Timing of the Terrain Refresh

 121 Map Scale Calibration for Overlays

 121 Scale Calibration: FSX

 121 Scale = Meters / (Delta Gauge Units x Zoom Factor)

 124 Scale Calibration: FS9

vii

 127 Transforming Lat/Lon Coordinates to Gauge Units

 127 Transform Lat/Lon Coords to Gauge Units: Map Overlays

 129 TrackUp = 1

 129 Euclidean Coordinate Rotation

 131 Vector Rotation given Distance and Bearing

 133 TCAS Overlay Example

 136 Transform Gauge Units (Mouse Click) to Lat/Lon Coordinates

 136 Determining Distance, Bearing, Lat/Lon from a Mouse Click

 140 Accuracy

 141 Key Equations

 142 TCAS

 142 Acknowledgements

 142 XML TCAS in FSX

 143 An approach to XML TCAS in FSX

 144 FAA TCAS II Protocol

 145 Range Tau and Vertical Tau

 147 DMOD and ZTHR

 147 Display Variables and Arrays

 148 XMLVars for Dynamic Variable Arrays

 149 TCAS Overlay Display Example

 151 Example TCAS XML gauge available from BlackBox website

 153 References

 154 LayerRacePoints

 155 CustomDraw: Rose

 155 Heading

 155 CenterX

 155 CenterY

 155 Radius

 155 Color

 155 BackgroundColor

 156 LineWidth

 156 Font

 156 FontSize

 156 BigFontSize

 156 FullCircle

 156 LabelAllTicks

 156 Force3Digits

viii

 158 Example XML Map Gauges

 158 TCAS Overlay Map

 158 TAWS map display

 158 Click Distance, Bearing, Lat and Lon

 158 Nearest search centered on mouse click point

 158 Click to add Waypoint to Flight Plan

 158 Stationary Map rather than normal Moving Map

 158 Gauge Setup

 159 Download Gauge Examples

 159 Description of Features

 165 LayerAirports Additional Information

 165 Airport Symbol Size – A Function of Rwy Length and Zoom

 166 TextDetailLayerAirports – A Function of Zoom

 167 Airport Symbol Type Overrides Text Index Selection

 168 Font Type, Font Size and Label Offset

 169 De-cluttering

 169 Stock gps_500 De-cluttering scheme

 170 Guidebook Updates v.2.0

1

Introduction

This is a guide for working with Flight Simulator’s CustomDraw map function – the
program that draws the map in the stock gps500 gauge. The purpose of the guidebook
is to expand on Microsoft’s SDK Moving Map documentation which is very brief so that
inexperienced gauge programmers can get up and running more quickly.

The guidebook is written primarily with FSX in mind because FSX contains important
additional mapping capabilities and related variables that are absent in FS9. However,
an attempt has been made to note key differences between the two sims, for example,
map projection scheme differences.

Almost all of the map variables are documented. However, there remain questions
about a few and those are noted in the text. Additionally, as I have never used FSX
race missions, there is no LayerRacePoints chapter yet.

In addition to the CustomDraw map variables, the following topics and map applications
are discussed:

� XML gauge units vs. physical screen pixels
� Calibrating XML and CustomDraw map scales
� Transforming mouse X and Y into longitude and latitude
� Creating map overlays and coordinate rotation for TrackUp=1
� TCAS overlay using ITrafficInfo variables
� TAWS map
� Mouse click distance, bearing, latitude and longitude
� Nearest search centered on a mouse click point rather than aircraft position
� Adding a flight plan waypoint by mouse click
� Stationary Map vs. Moving Map

In my opinion, some interesting applications can be imagined when you calibrate XML
and CustomDraw map scales and transform mouse X and Y into longitude and latitude.

I need to acknowledge the assistance of a few people; Tom Aguilo, and Robbie McElrath.
Tom is the author of XMLVars (included in XMLTools), a variable handling module that I
use to dynamically create XML variable arrays without which my rendition of TCAS is not
possible. Robbie is the author of BlackBox and Logger, both of which were indispensable
in the preparation of this guidebook. He also provided feedback on application of Affine
transforms needed for coordinate rotation.

Finally, two fully functional XML gauges for use in FSX are available as download from
the BlackBox website that demonstrate the applications mentioned above.

Bob McElrath
Bangkok, Thailand
July, 2015 (v.2.0.1)

© 2015 Robert McElrath

2

Map Projections

Flight Simulator provides two different map systems having different projection schemes.

1. Flight Planner Map and World Map: FS9 and FSX Flight Planner and World
maps both use the Equidistant Cylindrical, Plate Carrée projection (Flights �
Flight Planner � Find Route and World � Map)

2. CustomDraw fs9gps:Map: FS9 – Sinusoidal Equal Area, Pseudocylindrical
projection. FSX – Both Sinusoidal Equal Area and Plate Carrée projections.
CustomDraw is the map engine for the moving map display used in the stock
gps_500 and radar gauges and is the subject of this guidebook.

� Flight Planner and World Maps

Flight Planner and World maps of both FS9 and FSX incorporate an Equidistant
Cylindrical, Plate Carrée projection. This projection is characterized by straight and
orthogonal meridians (lines of constant longitude) and parallels (lines of constant
latitude) producing square graticules (the lat-lon grid) and simple, computationally
friendly equations. It is well suited for the easy panning around the globe and flight
plan editing; North is Up, East is Right, and lat-lon position is simple to interpolate.

Its drawback is that east-west distances are progressively distorted as latitude increases
toward the poles to the point where X-axis map scale becomes infinite at the poles. As
shown on the next page, the high latitude distortion is very obvious when the map is
zoomed out. Although useful and intuitive for general map reference, this projection
system is poorly suited for navigation purposes required by a gps instrument because of
the significant distance and angle distortions.

The images that follow are composite screen captures from the FS9 and FSX Flight
Planner and World maps:

3

4

� CustomDraw fs9gps:Map

CustomDraw fs9gps:Map is Flight Simulators programmable map engine used in the
stock gps gauges and in FSX radar applications. It is part of the gps.dll module. Map
variables discussed in the SDK and this guide apply to the fs9gps:Map system.

In FS9, fs9gps:Map uses a Sinusoidal Projection scheme (a.k.a. Sansom-Flamsteed,
Equal-Area Pseudocyclindrical, or Mercator Equal-Area Projection). Importantly, the
Sinusoidal Projection is characterized by equal north-south and east-west map scales at
all points on the globe. On the map as in reality, the length of each parallel is
proportional to the cosine of the latitude, so real distance between meridians decreases
toward the poles. The resulting shape of the earth is the region between two symmetric
rotated cosine curves.

Sinusoidal Projections display shape correctly only along the central meridian and distort
shape away from it. To mitigate this, the map can be “interrupted” by shifting the
longitude of the central meridian and redrawing the map around the new central
meridian. Flight Simulator incorporates interruption by continuously shifting the central
meridian as the aircraft flies. The continuous shift is enabled when the <Longitude>
variable is set to the aircraft longitude:

<Longitude> (A:PLANE LONGITUDE, radians) </Longitud e>

This produces a very accurate map especially when zoomed in to the most common gps
gauge operational ranges (200 NMiles or less).

Figure A, on the following page, is a composite screen shot of FS9’s CustomDraw
fs9gps:Map zoomed out to maximum Zoom. In this example, the central meridian is
90° West.

In FSX, the fs9gps:Map is a hybrid of Equal Area Sinusoidal and Equidistant Cylindrical
projections that is a function of Zoom. At Ranges below 270 NM (Zoom less than
500,000 meters), FSX uses the Sinusoidal Projection like FS9. However, at Zoom >=
500,000 meters, it switches to the Equidistant Cylindrical projection as shown in the
composite FSX fs9gps:Map screen capture in Figure B. A consequence of this switch is
that the X-axis scale must be multiplied by the cosine of the latitude to yield correct
east-west distances.

Distance distortion becomes so severe at high latitudes in this projection scheme that
FSX reverts back to sinusoidal projection at latitudes greater than 70° North and South.

On Equidistant Cylindrical Projections, Range Rings are actually ellipses (except at the
equator) because of the different X and Y axis scales. On Sinusoidal Projections, they
are circles. Consequently, Range Rings (<LayerRangeRings>) should never be
displayed in FSX at Zoom Factors of 270 NM and above.

5

6

Range (Zoom Factor)

Zoom (meters) = ZoomFactor (NMiles) x 1852 (meters / NMile)
ZoomFactor (NMiles) = Range (NMiles)

Range is the radius of the biggest complete circle that can be drawn within the
boundaries of the map, as demonstrated below. As an example, at a Zoom Factor of 15,
or a Zoom of 15 x 1852 = 27780 meters, Range is 15 NMiles and the map covers 30
NMiles (2 times the Range) in the short direction.

Note that Flight Simulator automatically draws the map to fit 2 times Range or Zoom
Factor into the short side of the map display.

Technically, this is the shortest side as measured in screen pixels, not gauge units.

In the map on the left, the short, Y-axis scale is, by definition, 30 NMiles per 400 gauge
units, or 0.075 NMiles per gauge unit-Y. For the right side map, the short, X-axis scale
is, by definition, 30 NMiles per 300 gauge units, or 0.100 NMiles per gauge unit-X.

It is important to note that while a key property of Sinusoidal Projections is equal X and
Y axis scales, when it comes to the screen display the long axis scale will not necessarily
equal the short axis scale if distances have been measured using gauge units. The
reason is that the shape of the gauge unit displayed is often rectangular rather than
square - its aspect ratio is not 1:1. This has significant impact whenever the mouse or a
movable cursor based on mouse (M:X), (M:Y) reference is used on fs9gps:Map for
distance or location measurement, as discussed in the following section.

7

Screen Pixels vs. Gauge Units

Combining XML Objects with CustomDraw Map

If a gauge programmer wants to combine their own map applications such as a custom
XML moving map overlay on the CustomDraw Map terrain base, or create the ability to
click anywhere on the map to retrieve latitude and longitude, distance and bearing, then
the difference between screen pixel and gauge measurement unit (gauge unit) aspect
ratios a the transform function between the two must be understood and applied.

CustomDraw Map is measured in screen pixels, XML gauge applications are measured in
gauge units, and the two are not the same.

The table below summarizes some of the things that can be accomplished using XML
script with standard gps and CustomDraw variables.

In general, moving map overlays of single point objects such as facilities or air traffic
can be accomplished. Shapes like Airspace or line segments such as Airways that
require data base access not available from a query of Flight Simulator’s gps database
are beyond the scope of this discussion.

While the applications above may be possible within the XML world, in my opinion it’s
not practical to replace most CustomDraw Map layers. A notable exception may be
Traffic. The CustomDraw LayerVehicles was designed for an ATC Controller radar
screen view, but it doesn’t produce the best looking TCAS gauge display. However,
even a TCAS II v7.1 system can be modeled using ITrafficInfo group variables, an
overlay with custom symbols, XML script to identify the Traffic Alerts, and XML to
replicate the v7.1 Resolution Advisories.

8

Screen pixels vs. Gauge units

Map Scale is the ratio of real distance to map display distance. For CustomDraw Map,
the scale units are NMiles or meters per physical screen pixel. On the other hand, the
XML Mouse parameters (M:X) and (M:Y), measure gauge units, not screen pixels. As
demonstrated below, when a gauge unit is used to measure distance between two
screen pixels, then:

� The number of gauge units will not necessarily equal the number of screen pixels
– usually not, in fact, because the panel background image is usually not at the
same aspect ratio as the screen. Panel background images of stock FS9 and FSX
aircraft are 1024 X 768 pixels (4:3 ratio), but monitor screens vary: 1600 X 1200
(4:3), 1600 X 900 (4:2.25), 1920 X 1080 (4:2.25), 1280 X 1024 (4:3.2), etc.

Panel Background Image may be distorted but CustomDraw Map is not

In the figures that follow, an FSX fs9gps:Map view of the San Francisco California, USA
peninsula is shown as displayed on a 1600 x 1200 pixel screen and on a 1600 x 900
pixel screen. In both cases, the panel background bitmap image is the stock FS9 & FSX
1024 x 768 pixels, and the CustomDraw map size is 500 x 400 gauge units. The Zoom
is low (Zoom less than 500 km) so the Sinusoidal projection is used:

� The relative distances, angles, areas and shapes of the two map images
rendered by CustomDraw are identical. There is no distortion of map elements
between the two images. The 15 NM Range Ring is perfectly circular on both
images. The panel background image and the shape of the 500 X 400 gauge
unit map area may be stretched on different screens, but the map rendered by
fs9gps:Map is never stretched or distorted.

9

� In other words, the fs9gps:Map engine is independent of both screen and panel
background image resolutions, and it internally applies sinusoidal projection
(zoom dependent in FSX) with equal X and Y axis scales. As rendered on the
screen, all sinusoidal projection fs9gps:Maps have equal X and Y scales as
measured in screen pixels.

� The only difference is that more map image is displayed in the east-west
direction on the 1600 x 900 screen due to the different aspect ratio of that
monitor.

� In each image, the short axis (Y axis) scale as measured in gauge units is the
same. By definition, it is 30 NMiles per 400 gauge units (Zoom Factor = 15), or
0.075 NM per gauge unit-Y.

� The long axis (X axis) scale, measured in gauge units-X, is different between the
two images. The reason is the aspect ratio of the screens, and consequently,
the aspect ratios of the gauge units, are not the same.

10

� Three examples of Panel Background Image stretch

The following 3 figures demonstrate stretch of the panel background image on different
monitors and in different view modes. Each produces a different gauge unit aspect ratio
that must be accounted for if using the mouse to measure distance on the CustomDraw
map or creating overlays for the CustomDraw map where the lat/lon of the point to be
displayed must be correctly translated into gauge units.

1. 1600 x 1200 screen and 1024 x 768 panel background

In the figure above, both the screen and the panel background image have the same
aspect ratio so there is no distortion of gauge units when the background panel bitmap
image is enlarged to fill the screen.

In this configuration, the short and long axis scales measured in gauge units are
identical and, in the cartoon example, a mouse click at X=“4”, Y=“0” is at a Range value
of 3 and a mouse click at X=“7”, Y=“3” is also at a Range value of 3. This is the
simplest situation.

11

2. 1600 x 900 screen and 1024 x 768 panel background

On the 1600 x 900 screen above, the panel background bitmap image is stretched to fill
the screen and the gauge unit shape becomes elongated as demonstrated in the cartoon.
A mouse click at X=“4”, Y=“0” is still at a Range value of 3, but a mouse click at X=“7”,
Y=“3” is at a point on the map further than Range = 3. The short and long axis scales
measured in gauge units are no longer equal; now a mouse click at X=“6.25”, Y=“3” is
at Range = 3.

3. Windowed vs. Full Screen View mode

Even the subtle change of switching from Full Screen View to Windowed View (i.e., non-
Full Screen View) affects map scales measured in gauge units because the background
image is compressed to make room for the FS Menu, the Windows Task bar, and a one

12

screen pixel black frame (in FS9). This changes the gauge unit aspect ratio which
changes the XML map scales.

13

CustomDraw Map variables

CustomDraw Map Variables

Name, X, Y, and Bright must be placed in the CustomDraw start tag, they cannot be
scripted as child elements like the rest of the fs9gps:Map variables. Name, X, and Y are
mandatory. Bright is optional.

<CustomDraw Name="fs9gps:1:Map" X="275" Y="230" Bri ght="1">

� Name=“fs9gps:1:Map”. fs9gps:Map refers to the code that generates the map

display. From the SDK: the ":1" is unnecessary if the panel in which the map is to
appear has only one map. Otherwise use ":1", ":2" and so on to distinguish the
different maps.

� X="275" Y=“230”. X and Y are the horizontal and vertical dimensions of the map

display, measured in gauge units (gauge “pixels”) not in monitor or screen pixels.

As an example, the dimensions of the map display of the stock FS9 and FSX
gps_500.xml gauges are 275 x 230 gauge units. Refer to line 759 of the FSX
gps_500.xml gauge.

� Bright=“1”. Set to “1”, “Yes”, or “True” if the map remains at its normal

brightness at dawn, dusk and night times of the day, otherwise it will be darkened.

The remaining fs9gps:Map variables discussed below as well as the Layer variables
covered in subsequent chapters can all be scripted as child elements of the
CustomDraw element.

� Zoom (meters, number)

Zoom changes the apparent distance of the observer (pilot) to the ground surface
shown in the map by changing map scales and area displayed as Zoom changes. It is a
standard zoom definition - zoom in (smaller Zoom values) to see more detail, zoom out
(larger Zoom values) to see more area.

Zoom limits are 80 to 5,000,000 meters in FSX and 100 to 5,000,000 meters in FS9.

The terms Zoom and Range are sometimes used interchangeably, but the fs9gps:Map
variable name is Zoom.

14

On the map, Zoom or Range represents one-half the distance of the short side of the
map display as shown on the next page. Flight Simulator automatically draws the map
to fit 2 times Range or Zoom into the short side of the map display.

The term Zoom Factor is defined in the stock gps_500 gauge to represent NMiles
instead of the default units, meters. If the user wants a range of 15 NMiles, then the
following XML can be used:

<Zoom> 27780 </Zoom> or

<Zoom> 15 1852.0 * </Zoom> or

<Zoom> (L:ZoomFactor, number) 1852.0 * </Zoom> or

<Zoom> (@g:map_ZoomFactor) 1852.0 * </Zoom>

where (L:ZoomFactor, number) and (@g:map_ZoomFactor) values equal 15. The
constant, 1852.0, is the number of meters per Nautical Mile, and provides the
conversion to NMiles.

� Latitude
� Longitude (radians, number)

Latitude and longitude of the center of the map, in radians. Usually, this is the aircraft
position which can be defined as:

15

<Latitude> (A:GPS POSITION LAT, radians) </Latitude >

<Longitude> (A:GPS POSITION LON, radians) </Longitu de> or

<Latitude> (A:PLANE LATITUDE, radians) </Latitude>

<Longitude> (A:PLANE LONGITUDE, radians) </Longitud e>

A:GPS POSITION LAT and LON are a good choice because they are updated every one
second, consistent with other map related gps variables. They are the lat lon choice of
the stock gps 500 XML gauge provided in Flight Simulator. In some applications such as
a TCAS system, however, A:PLANE LATITUDE and LONGITUDE are preferred because
these are updated every gauge update cycle.

In a Multiplayer ATC Controller session, the radar screen (map) can be centered on any
fixed location. For the control tower at Johannesburg Intl. Airport (FAJS), Republic of
South Africa (Lat: S26° 8.31093”, Lon: E028° 15.08110”), the XML would be:

<Latitude> -26.138516 dgrd </Latitude>

<Longitude> 28.251352 dgrd </Longitude> or

<Latitude> -0.4562032 </Latitude>

<Longitude> 0.4930791 </Longitude>

However, the normal practice is to select the airport in the Multiplayer set-up screen. FS
will automatically load the control tower lat/lon.

� Heading (radians)

Heading determines the orientation and direction of movement of the map when the
aircraft is in flight, and when TrackUp = 1.

Whether True or Magnetic Heading or even a fixed orientation is specified is a matter of
preference. In actual Garmin GPS/GNS 400 and 500 Series and G1000 units, setup
configurations accommodate True or Magnetic tracks or User defined orientation. In the
stock Flight Simulator gps_500.xml gauge and G1000 MFD xml gauges, Heading is
prescribed as TRUE, which is the usual preference, but could be changed if desired.
Refer to line 764 in the gps_500.xml gauge or line 2706 in the MFD_Baron.xml gauge.

<Heading> (A:GPS GROUND TRUE TRACK, radians) </Head ing>

(A:PLANE HEADING DEGREES TRUE, radians) is not a good variable to be used for
Heading because in a cross-wind, the aircraft heading and ground track differ, but
ground track is what is needed. The stock gps 500 XML gauge provided in Flight
Simulator uses (A:GPS GROUND TRUE TRACK, radians).

16

Heading Examples

The figures above depict an aircraft flying northeast along the coast after departure
from Deputado Luís Eduardo Magalhães International Airport (SBSV), Salvador da Bahia,
Brazil. Map size is 50 x 62.5 NM.

In Figure A, Heading is set to the True ground track, and TrackUp is 1. The ground
track that the aircraft is making always points up, to the top of the map. This is the
normal configuration. Map movement is always 180 degrees from the ground track.

In Figure B, Heading is set to a constant 110 degrees:

<Heading> 110 dgrd </Heading>

In Figure C, TrackUp is not set to 1. In this event, the map is always oriented with the
top, or up, towards true North regardless of the Heading value.

The compass rose of all three maps is oriented to magnetic North, consistent with the
aircraft’s DG or HSI compass.

Fig A: Heading =
 (A:GPS GROUND TRUE TRACK, radians)
TrackUp = 1

Fig B: Heading = 110 dgrd (constant)
TrackUp = 1

Fig C: Heading =
 (A:GPS GROUND TRUE TRACK, radians)
TrackUp = 0

A B

C

17

Also note that in fs9gps:Map, the map surface moves and the aircraft cursor remains
fixed. There is no capability using the Map variables for the aircraft to move across a
fixed map view although this can be accomplished through use of an overlay as
explained in the Example XML Maps chapter (and an XML gauge with this capability is
available for download).

� TrackUp (bool)

TrackUp determines whether Heading (the aircraft ground track or other specified
direction) or true North points up, toward the top of the map.

• TrackUp = 0. The top of the map, up, points toward true North

• TrackUp = any value other than zero. The direction determined by

Heading points up, to the top of the map

� CenterX
� CenterY (gauge units, number)

CenterX and CenterY define the position on the map display where the map “center” is
located. The map Center serves are the position of the aircraft or of the control tower in
a ATC Controller session (using stock FSX radar.xml). CenterX and CenterY are gauge
units measured from the upper left corner of the map.

� SelectedVehicle (enum) FSX Only

SelectedVehicle is a variable in the ITrafficInfo group that is useful when fs9gps:Map is
set up as an ATC radar screen. It is the index pointer used to select a specific aircraft
from the ITrafficInfo list in order to highlight its movement in contrast to all other
aircraft on the radar screen, or to keep specific record of any flight variables associated
with this aircraft. The aircraft must be included in the ITrafficInfo search results in
order to be selected/highlighted. Only one aircraft can be Selected at a time.

Refer to the ITrafficInfo group chapter for further detail.

� TagPosition (enum) FSX Only

TagPosition is an index associated with the LayerVehicles group that controls placement
of the aircraft flight status information label (TextDetailLayerVehicles) for the Selected
aircraft on the radar screen. Its purpose is to help make the Selected aircraft
information tag easier to see by moving its position relative to all the other aircraft
information tags.

Tag placement relative to the aircraft symbol is as follows:

18

0 = UPPER_RIGHT (Default)
1 = RIGHT
2 = LOWER_RIGHT
3 = BOTTOM

4 = LOWER_LEFT
5 = LEFT
6 = UPPER_LEFT
7 = TOP

An aircraft must first be Selected and then a new TagPosition can be set if desired.

As an example, the radar screen images below show airborne AI traffic with flight
information labels (TextDetailLayerVehicles = 2) displayed in the default Upper Right
position (TagPosition = 0. See Fig A).

The table shows ITrafficInfo search results and N5618R, a very fast Beech King Air 350,
has been Selected. Even though the Selected aircraft label always turns red, it is still a
little difficult to read. Subsequently, its TagPosition was set to 2 = Lower Right, as
shown in Figure B, and can be read more clearly in that position.

The XML for this sequence is:

2 (>C:ITrafficInfo:SelectedVehicle)

<TagPosition> 2 </TagPosition>

(C:ITrafficInfo:SelectedVehicleID) (>C:fs9gps:Selec tedVehicle)

Further discussion of the XML involved can be found in the ITrafficInfo group chapter.

TagPosition = 0

TagPosition = 2

A B

19

� Map Object Color Syntax

Map object color must be specified using a composite hexadecimal number representing
Blue-Green-Red shades, or the decimal equivalent of that composite hex. Example:

Blue: 107 Green: 27 Red: 137 BGR Hex: 0x6B1B89

Blue shade = 107 ; hex = 6B

Green shade = 27 ; hex = 1B

Red shade = 137 ; hex = 89

Composite BGR Hex: 0x6B1B89

Decimal equivalent = 7019401

(6B1B89 hex = 7019401 decimal)

Alternatively, the decimal number 7019401 can be used in place of 0x6B1B89.

Map object color differs from Text color which may be specified using either Windows
color names* like “blue” or “yellow” or a composite hex in the RGB form of “#891B6B”.

* https://msdn.microsoft.com/en-us/library/aa358802(v=vs.85).aspx

� BackgroundColor (BGR hexadecimal) FSX Only

BackgroundColor is the background color of the map when LayerTerrain = 0. It is also
the color of land when DetailLayerTerrain = 1 (Water Only). If BackgroundColor is
omitted from the script, the default color is black.

In FS9, the background color cannot be selected. Whenever LayerTerrain = 0, the
background color is always black in FS9.

� IceColor (BGR hexadecimal) FSX Only

IceColor is the color of the land surface when it is ice. If IceColor is omitted from the
script, the default color is a light gray:

Blue: 222 Green: 222 Red: 222 BGR Hex: 0xDEDEDE

In FS9, IceColor cannot be changed. It is always light gray 0xDEDEDE like the FSX
default.

� WaterColor (BGR hexadecimal) FSX Only

WaterColor is the color of water surfaces: oceans, lakes, and rivers. If WaterColor is
omitted from the script, the default color is a light blue:

20

Blue: 247 Green: 222 Red: 132 BGR Hex: 0xF7DE84

In FS9, WaterColor cannot be changed. It is always light blue 0xF7DE84 like the FSX
default.

� ElevationXColor (BGR hexadecimal) FSX Only

ElevationXColor determines the terrain color applied between specified elevations.

The number in the variable name defines the top elevation on which the color will be
applied. The units are feet and are not changed even if FS settings are set to metric
(Options > Settings > General > Unit of measure > Metric).

For example, the xml:

<Elevation3000Color> 0x73C3C8 </Elevation3000Color>

produces a tan elevation color 0x73C3C8 between 2000 ft and 3000 ft elevation:

Blue: 115 Green: 195 Red: 200 BGR Hex: 0x73C3C8

There 18 ElevationXColor variables representing 1000 ft elevation bands from -1000 ft to
17000 ft+ msl. The even 1000 ft interval is fixed and cannot be changed.

� Elevation0Color = Color between -1000 and 0 feet elevation

� Elevation1000Color = Color between 0 and 1000 feet elevation

� Elevation2000Color = Color between 1000 and 2000 feet elevation

� Elevation3000Color = Color between 2000 and 3000 feet elevation

� … et cetera …

� Elevation16000Color = Color between 15000 and 16000 feet elevation

The 1000 ft interval is similar for Elevation0Color through Elevation16000Color.
Elevation17000Color is slightly different however:

� Elevation17000Color = Color 16000 feet and greater

21

The maps below show the default FS9 and FSX elevation colors on the left (no
ElevationXColor variables used) and the Garmin 1000 MFD colors using ElevationXColor
variables on the right. Refer to LayerTerrain chapter for additional discussion.

Note that TerrainShadow is enabled above which slightly changes color brightness due
to illumination and shadow effects.

� TerrainShadow (bool) FSX Only

TerrainShadow highlights topography by illuminating it from compass direction (True)
West. The illumination brightens colors on the west, and dims colors on the east side of
terrain. Any value other that 0 enables TerrainShadow.

The maps below are from the eastern seaboard of the US in the Maryland, Pennsylvania,
Delaware, New Jersey area. Map size is 250 x 200 NM.

In the first pair of maps, all ElevationXColor variables are 0xC0C0C0. Ridges of the
Appalachian Mountains in the western and northern portions of the map are clearly
illuminated when TerrainShadow is enabled.

TerrainShadow = 0 TerrainShadow = 1

G1000 (from Manual) Elevation Palette Default FS9 and FSX Elevation Palette

Island of Hawaii, USA Island of Hawaii, USA

22

The second pair of maps demonstrates TerrainShadow when the G1000 color palette is
used with ElevationXColor variables.

TerrainShadow is available throughout all Zoom ranges in FSX.

In FS9, terrain shadowing is enabled by default for Zoom levels between 100 and
263,107 meters. At Zoom = 263,108 meters and higher, terrain shadow is disabled.

� PanVertical
� PanHorizontal (physical screen pixels, enum) FSX Only

PanVertical and PanHorizontal move the center of the map and are analogous to
CenterX and CenterY except that the Pan variables are measured in physical screen
pixels while CenterX and Y are measured in gauge pixels.

The screen captures on the next page show the pan effect. In Figure A, Hong Kong
International Airport (VHHH) is at the center of the map, but the center has been
adjusted using CenterX to cause the airport to be positioned at the horizontal mid point
of the screen. The screen resolution is 1600 x 1200 pixels, so VHHH is at the 800 pixel
position as shown by the red cross hairs.

Figure B is a screen shot after a pan to the left of 400 has been applied. Because the
reference point (the red cross hairs) is fixed, panning to the left causes the map to
move to the right. Now, VHHH has moved 400 physical screen pixels to the right as
marked by the blue cross hair, and the red cross hair is centered on a location that was
out of map view to the left before the pan.

Everything is shifted: Terrain, User’s Aircraft, Range Rings, Traffic, etc.

TerrainShadow = 0 TerrainShadow = 1

23

The XML requires CustomDraw and Mouse entries. Within the CustomDraw element:

<PanVertical> (L:Pan_V) </PanVertical>

<PanHorizontal> (L:Pan_H) </PanHorizontal>

<PanReset> (L:Pan_Reset) </PanReset>

The PanVertical, Horizontal and Reset L:Vars can have any name and can be unitless.

24

Click spots are usually established to enable mouse control of panning. These compute
the L:Pan_V, L:Pan_H, and L:Pan_Reset values. The Mouse XML below is associated

with the pan controls and of the gauge in the screen captures.

<Area Name="PanLEFT" Left="10" Top="275" Width="20" Height="30">

<Cursor Type="LeftArrow"/>
<Click Kind="LeftSingle">

(L:Pan_H) (L:Pan_Pix, enum) - (>L:Pan_H)
</Click>

</Area>

<Area Name="PanRIGHT" Left="60" Top="275" Width="20 " Height="30">

<Cursor Type="RightArrow"/>
<Click Kind="LeftSingle">

(L:Pan_H) (L:Pan_Pix, enum) + (>L:Pan_H)
</Click>

</Area>

<Area Name="PanUP" Left="30" Top="255" Width="30" H eight="20">

<Cursor Type="DownArrow"/>
<Click Kind="LeftSingle">

(L:Pan_V) (L:Pan_Pix, enum) - (>L:Pan_V)
</Click>

</Area>

<Area Name="PanDOWN" Left="30" Top="304" Width="30" Height="20">

<Cursor Type="UpArrow"/>
<Click Kind="LeftSingle">

(L:Pan_V) (L:Pan_Pix, enum) + (>L:Pan_V)
</Click>

</Area>

<Area Name="PanRESET" Left="37" Top="282" Width="15 " Height="15">

<Cursor Type="Hand"/>
<Click Kind="LeftSingle">

(L:Pan_Reset) ! (>L:Pan_Reset)
</Click>

</Area>

In this example, the magnitude of the pan (number of screen pixels) is a variable,
(L:Pan_Pix,_enum), that was previously set with a value of 400:

400 (>L:Pan_Pix, enum)

25

� PanReset (unitless) FSX Only

Toggling PanReset will reset the map to its center position prior to the application of
PanVertical and/or PanHorizontal. Refer to the XML example above.

� Priority (bool)

From SDK: Set to True to draw the map as a priority.

� MapLoading (bool) FSX Only

From SDK: Set to True if the map is currently being loaded. This is a SET, not GET
variable?

� UpdateAlways (bool) FSX Only

From SDK: Set to True if the map should be updated every frame. Set to False if the
map is only to be updated when positions have changed enough.

� Priority, MapLoading, UpdateAlways

Unfortunately, it is difficult to be sure what these last 3 variables do. I have only a few
observations:

• UpdateAlways will not by itself cause terrain to be refreshed (see TAWS chapter)

• LayerVehicles AI traffic positions do not update when UpdateAlways=0 and user
aircraft is not moving. Therefore, in an ATC simulation, UpdateAlways must
always be set to 1. Note that ITrafficInfo variables (other than
ITrafficInfo:CurrentDistance) update every gauge cycle regardless of
UpdateAlways setting.

• The map is “jittery” when UpdateAlways = 1.

• Priority=1 clearly speeds certain scripts such as the TAWS refresh - the terrain
color refresh (see TAWS chapter)

I welcome specific feedback on the purpose and actions of Priority, MapLoading, and
UpdateAlways.

26

Number Formats

Map variables require numerical input in the form of HEXADECIMAL or DECIMAL
numbers. Unlike A:, E:, P:, and L:Vars, Units are not added.

� HEXADECIMAL NUMBERS

Hexadecimal values can be derived using a Bit Table or Composite Hex method.

1) Bit Table

Selection choices are organized by use of a bit table. In the LayerAirports example
below, there are seven categories of Airports and selection of more than one
category is allowed. If Soft Surface, Hard Surface and Non-Towered airports are
wanted, then the bit table selections look like:

BIT TABLE

64 32 16 8 4 2 1 - Decimal equivalent

P
R
IV

A
T
E

H
E
LI

P
O

R
T

W
A
T
E
R

S
O

F
T

S
U

R
F
A
C
E

H
A
R
D

S
U

R
F
A
C
E

N
O

T

T
O

W
E
R
E
D

T
O

W
E
R
E
D

6 5 4 3 2 1 0 - Bit number (Bit 0 thru Bit 6)

0 0 0 1 1 1 0 - ObjectDetailLayerAirports selections

The resulting Binary number is 0_0_0_1_1_1_0. The Decimal integer equivalent
is 14 and the Hexadecimal is E. The appropriate XML is therefore either:

<ObjectDetailLayerAirports> 0xE </ObjectDetailLayer Airports>

or,

<ObjectDetailLayerAirports> 14 </ObjectDetailLayerA irports>

2) Composite Hexadecimal

Map object color should be specified using a composite hexadecimal number
representing Blue-Green-Red shades, or the decimal equivalent of that composite
hex. Example:

27

Blue: 173 Green: 132 Red: 8 BGR Hex: 0xAD8408

Blue shade = 173 ; hex = AD

Green shade = 132 ; hex = 84

Red shade = 8 ; hex = 08

Composite BGR Hex: 0xAD8408

Decimal equivalent = 11371528

(AD8408 hex = 11371528 decimal)

Alternatively, the decimal integer number 11371528 can be used in place of
0xAD8408. The appropriate XML is therefore either:

<ColorLayerAirports> 0xAD8408 </ColorLayerAirports>

or,

<ColorLayerAirports> 11371528 </ColorLayerAirports>

� DECIMAL NUMBERS

Decimal numbers used with Map variables are Integer, Bool, or Floating Point,
depending upon the requirements of the variable.

1)_Integer – A whole number that does not include a fractional part. Single
selection values such as DetailLayerVehicles (it’s either -1, 0, 1, 2, or 3, but not a
combination of more than one selection).

<DetailLayerVehicles> 2 </DetailLayerVehicles>

2)_Bool – A subset of Integer, the variables using Bool expect either 0 or 1. An
example is LayerTerrain which turns the Terrain layer On or Off. Any number other
than 0 will display the layer. A zero results in no rendering.

<LayerTerrain> 1 </LayerTerrain>

3)_Float - The number can include fractional values to the right of the decimal
point; that is, it isn’t necessarily an integer. An example is Latitude and Longitude
which require input in Radians, and consequently need the precision of several digits
to the right of the decimal point:

<Latitude> -0.4562032 </Latitude>

28

� USE OF EXPRESSIONS

Expressions (formulas) or other Variables are commonly used with Map variables.

Examples:

<Longitude> (A:PLANE LONGITUDE, radians) </Longitud e>

<Latitude> -26.138516 dgrd </Latitude>

<Zoom> (L:ZoomFactor, number) 1852.0 * </Zoom>

<Zoom> (@g:map_ZoomFactor) 1852.0 * </Zoom>

� STRING VARIABLES

There are only a few string variables associated with fs9gps:Map:

CustomDraw Map

� LayerApproachAirport (string)

LayerApproachAirport is the fs9gps ICAO identity of the approach airport.

It is the full ICAO, not the Ident. Equivalent to WaypointAirportICAO.

CustomDraw Rose

� Font (string)

Font used for the degrees markings, for example, Arial.

29

LayerTerrain

LayerTerrain draws terrain elevation and water background colors.

� LayerTerrain (bool)

LayerTerrain controls whether or not the layer is displayed. Any number other than 0
will display the layer. A zero results in no rendering. If LayerTerrain is zero, the
background color of the map is determined by the BackgroundColor variable in FSX. In
FS9, the background color is always black.

Example XML:

<LayerTerrain> 1 </LayerTerrain>

� DetailLayerTerrain (enum)

DetailLayerTerrain controls whether or not terrain elevation colors are displayed.

• DetailLayerTerrain = -1. Terrain elevation colors are displayed. In FS9, the
default terrain elevation palette is applied to land and water. In FSX, the default
terrain elevation palette is applied to land if no ElevationXColor variables are
defined. Water color can be set using WaterColor.

• DetailLayerTerrain = 0. No terrain elevation colors are displayed. This has the
same effect as LayerTerrain = 0. The map background color will be set by
BackgroundColor in FSx, and will always be black in FS9.

• DetailLayerTerrain = 1. Water only. Land will show no elevation colors but will
be the same color as the map background color. Water is a default dark blue in
FS9, same in FSX, but can be reset using WaterColor in FSX.

• DetailLayerTerrain = 2+. Same as -1. Terrain elevation colors are displayed. In
FS9, the default terrain elevation palette is applied to land and water. In FSX,
the default terrain elevation palette is applied to land if no ElevationXColor
variables are defined. Water color can be set using WaterColor.

Example Elevation Colors

The following examples demonstrate some of the options. The maps cover Tokyo Bay
and Mt. Fuji and are centered on Atsugi Aero Base (RJTA), Kanagawa Prefecture, Japan.
Map size 87.5 x 70 NM.

30

A � VFR Sectional. US FAA Format

Figure A

VFR Sectional chart, US FAA
format for comparison

B � DetailLayerTerrain = -1 or 2+
� Default FSX Terrain Palette

Figure B

DetailLayerTerrain = -1

Default FSX terrain color
palette. No ElevationXColor
variables are in the XML script

FSX

C � DetailLayerTerrain = -1 or 2+
� Default FSX Terrain Palette
� TerrainShadow = 1

Figure C

DetailLayerTerrain = -1

Default FSX colors with Terrain
Shadowing

Comparison with the US VFR
Sectional which is the basis of
fs9gps:Map format is apparent

FSX

31

D � DetailLayerTerrain = -1 or 2+
� Default FSX Terrain Palette
� TerrainShadow = 1
� WaterColor = 0x783C30

Figure D

DetailLayerTerrain = -1

WaterColor was changed to
Garmin’s G1000 water color.
Provides better contrast with
land

FSX

E � DetailLayerTerrain = -1 or 2+
� G1000 Terrain Palette
� WaterColor = 0x783C30

Figure E

DetailLayerTerrain = -1

Garmin terrain color palette
(from Garmin G1000 Manual)
was used with ElevationXColor
variables

FSX

F � DetailLayerTerrain = -1 or 2+
� G1000 Terrain Palette
� TerainShadow = 1
� WaterColor = 0x783C30

Figure F

DetailLayerTerrain = -1

Garmin G1000 terrain color
palette was used with
ElevationXColor variables

TerrainShadow = 1

FSX

32

G � DetailLayerTerrain = 1
� WaterColor = 0x783C30
� BackgroundColor= 0x99FFCC

Figure G

DetailLayerTerrain = 1.

Water only.

When DetailLayerTerrain is set
to 1, elevation colors are
disabled, and BackgroundColor
is used as the land color. In
this example light green,
0x99FFCC

FSX

H � DetailLayerTerrain = 2
� ElevationXXXXColor = 0xC0C0C0
� WaterColor = 0x783C30
� TerrainShadow = 1

Figure H

DetailLayerTerrain = -1

TerrainShadow example. For
this view, all ElevationxColor
variables are 0xC0C0C0 and
TerrainShadow = 1

FSX

I
Figure I

DetailLayerTerrain = -1

TAWS Map approximation.

All ElevationXColor variables for
altitudes above aircraft are red,
ElevationXColor for the layer
beneath aircraft is yellow, and
below that, are all black. FSX
stock WaterColor used to mask
screen refresh flicker

� DetailLayerTerrain = -1 or 2+
� ElevationXXXXColor = a/c alt dependent
� WaterColor = 0xF7DE84
� TerrainShadow = 0

FSX

TerrainShadow must be
disabled in TAWS Mode

33

� TextDetailLayerTerrain

TextDetailLayerTerrain is not functional. There is no text in this layer.

� ObjectDetailLayerTerrain (bool)

ObjectDetailLayerTerrain is redundant with LayerTerrain and it is best to omit this
variable from the XML script altogether. If ObjectDetailLayerTerrain is zero, then
regardless of LayerTerrain or DetailLayerTerrain values, no elevation colors are
displayed and the map background is determined by BackgroundColor in FSX or is black
in FS9. Any number other than zero will enable DetailLayerTerrain to control elevation
color parameters. In all cases, LayerTerrain is the parent variable and should be used to
control display of terrain elevation colors.

J

FS9

Figure J

DetailLayerTerrain = -1

FS9 Terrain color. This is the
default, and only, terrain color
scheme available.

In FS9, TerrainShadow is not a
variable but is applied by
default in low Zoom ranges

� DetailLayerTerrain = -1 or 2+

Figure K

DetailLayerTerrain = 1

Water only.

In FS9, there is no land or
water color choice. Land color
is always black, and black
background is the only FS9
option. Very dark image.

K � DetailLayerTerrain = 1

FS9

34

� ColorLayerTerrain

ColorLayerTerrain is not functional in either FS9 or FSX.

� TextColorLayerTerrain

TextColorLayerTerrain is not functional. There is no text in this layer.

Elevation Color Palette Examples

Elevation color palettes of FS9, FSX and the real Garmin 1000 MFD within the limits of
the color fidelity of screen captures and Pilot Guide pdf manuals are shown below.

The RGB decimal values are in normal R G B order whereas the hexadecimal is standard
FS BGR hexadecimal.

35

Color Feathering (FSX)

When using either the default FSX color palette or custom ElevationXColor color
variables without TerrainShadow, FSX feathers the colors. This is something to be
aware of when developing a terrain awareness map.

The maps below demonstrate the effect on Elevation4000Color.

Figure A is a contour map of the Island of Hawaii, USA. The 2000’, 3000’, and 4000’
topographic contours from the FSX terrain data are displayed.

In Figure B, Elevation4000Color = 0x37597D (a chocolate brown color) and
TerrainShadow = 1. The elevation color uniformly fills the interval from 4000 feet to
3000 feet as expected, and no color feathering occurs.

Figure C is the same map but with TerrainShadow = 0. This presents a few issues to
deal with for a terrain awareness display. The area outlined by the dashed line is
enlarged a little in Figure D.

Figure D shows that the brown color band
associated with Elevation4000Color is actually
centered on the 3000’ elevation contour and
feathers out in both directions for 1000 vertical
feet.

2000’

3000’

4000 ’

Elevation4000Color
= 0x37597D

TerrainShadow = 0

D

2000’

3000’

4000 ’

Elevation4000Color
= 0x37597D

TerrainShadow = 0

D

36

TerrainShadow Affect on TAWS Colors (FSX)

Certain colors display poorly when Terrain Shadow is enabled. Consequently, terrain
palette ElevationXColor color values must be selected carefully, and special applications
such as a TAWS terrain awareness map facsimile should be rendered without Terrain
Shadow.

The following demonstrates the issue:

Figures A and B demonstrate gray and colored palette terrain maps. The selected
colors display well using either TerrainShadow = 0 or TerrainShadow = 1.

Figures C and D are TAWS terrain awareness maps scripted to show red, yellow, or
black colors only as a function of A:RADIO HEIGHT. Figure C is displayed with
TerrainShadow = 1 and is obviously not satisfactory.

Figure D shows the same Red, Yellow, Black ElevationXColor values as Figure C, but
displayed without terrain shadow, that is, with TerrainShadow = 0. Color blending
occurs when TerrainShadow = 0, but this image is clearly superior to Figure C.

Why this behavior with certain colors and TerrainShadow = 1, I haven’t tried to figure
out. The effect appears to be independent of graphics hardware and drivers.

The chapter TAWS Terrain Awareness Map in FSX discusses an approach to scripting a
Terrain Awareness Map approximation.

37

LayerBorders

LayerBorders adds geopolitical boundary lines. Onshore, these are international
boundaries as well as state boundaries in the United States. Offshore in FSX, they
include coarsely digitized territorial water boundaries and large regional boundaries such
as those recognized in the South Pacific. Offshore in FS9, coastlines are drawn.
Boundaries drawn by LayerBorders do not correspond to ICAO Regions in all cases (e.g.,
FSX South Pacific, Australia).

In FSX only, LayerBorders includes some (although relatively few compared to a list of
current day border disputes) disputed international boundaries.

� LayerBorders (bool)

LayerBorders controls whether or not the layer is displayed. Any number other than 0
will display the layer. A zero results in no rendering.

Example XML:

<LayerBorders> 1 </LayerBorders>

� DetailLayerBorders (bool)

DetailLayerBorders is redundant with LayerBorder. Any number other than 0 will display
the layer. A zero results in no rendering. It is recommended to exclude
DetailLayerBorders from the XML script and to control display of the layer using
LayerBorders.

� TextDetailLayerBorders

TextDetailLayerBorders is not functional. No names are displayed by this layer.

� ObjectDetailLayerBorders (decimal or hexadecimal)

FSX:

In FSX only, ObjectDetailLayerBorders controls whether disputed international
boundaries, “non-disputed” international and state boundaries, or both, are displayed.

38

• ObjectDetailLayerBorders = -1. Default. Disputed and “Non-Disputed”

• ObjectDetailLayerBorders = 0. Nothing is drawn

• ObjectDetailLayerBorders = 1. Disputed boundaries are drawn

• ObjectDetailLayerBorders = 2. Disputed and “Non-Disputed” boundaries

Technically, FSX ObjectDetailLayerBorders is a sort of binary construction that can be
represented by a hexadecimal number:

2 1 - Decimal equivalent

IN
T
E
R
N

A
T
IO

N
A
L

A
N

D
 R

E
G

IO
N

A
L

B
O

U
N

D
A
R
Y

D
IS

P
U

T
E
D

IN
T
E
R
N

A
T
IO

N
A
L

B
O

U
N

D
A
R
Y

1 0 - Bit number (Bit 0 and Bit1)

1 0 - ObjectDetailLayerBorders selections

However, Bit 0 (disputed boundaries) is always live and consequently, always drawn.
Using the selection above, 0x2, disputed boundaries are still displayed.

As far as I can tell, thirteen disputed boundaries are depicted by Flight Simulator (FSX):

Disputants (alphabetic) Disputed Territory

Guyana - Venezuela Zona en Reclamatión: Guyana Esequiba

Guyana - Suriname New River Triangle

Israel - State of Palestine Gaza Strip

Israel - State of Palestine West Bank

Israel - ?? North District excluding Golan Heights

Cyprus - N. Cyprus Turkish Cypriot Area (Northern Cyprus)

Morocco - Spain
Ceuta, Melilla, Peñón de Vélez de la Gomera,
Peñón de Alhucemas islands, Islas Chafarinas,
Isla de Alborán

Azerbaijan - Nagorno Karabakh Nagorno-Karabakh territory

India - Pakistan Azad Kashmir

India - Pakistan Northern Areas, Siachen Glacier

China - India Aksai Chin

China - Taiwan
Taiwan, Penghu Islands, Green and Orchid
Islands

Morocco - Sahrawi Arab Dem. Rep. Western Sahara

39

Disputed boundaries are drawn using a dashed, one screen pixel wide line. Non-
disputed boundaries (according to FSX) use a solid 1 pixel line.

FS9:

In FS9 only, ObjectDetailLayerBorders controls whether coastlines, international borders
(plus State borders in the USA) or both, are displayed. The FS9 database does not
include disputed territories.

A Decimal or Hexadecimal number is used that is in the form of a bit table filter similar
to filters in Nearest searches (reference: GPS Guidebook page 62-63).

ObjectDetailLayerBorders (FS9)

Bit Name Bit Name

0 Coastlines 1 Borders

2 1 - Decimal equivalent

B
O

R
D

E
R
S

C
O

A
S
T
LI

N
E

1 0 - Bit number (Bit 0 and Bit 1)

1 0 - ObjectDetailLayerBorders selections

As an example, if borders but no coastline is desired, then Bit 1 is selected which results
in the Binary number 1 0 . The decimal equivalent is 2 and the hexadecimal is 0x2.

The appropriate XML:

<ObjectDetailLayerBorders> 2 </ObjectDetailLayerBor ders> or

<ObjectDetailLayerBorders> 0x2 </ObjectDetailLayerB orders>

Boundaries and Coastlines are drawn using a one screen pixel wide long dash, short
dash line.

40

� ColorLayerBorders (BGR hexadecimal)

ColorLayerBorders controls the color of the boundary line. The default is a dark gray:

Blue: 132 Green: 132 Red: 132 BGR Hex: 0x848484

� TextColorLayerBorders

TextColorLayerBorders is not functional.

Borders Example - FSX

The maps below demonstrate FSX ObjectDetailLayerBorders in the Venezuela – Guyana
– Suriname – French Guiana region of South America. The Guyaya Esequiba and
Suriname New River Triangle disputed territories are shown by the dotted lines. Map
size 1000 x 800 NM.

ObjectDetailLayerBorders = 1 ObjectDetailLayerBorders = 2 FSX FSX

41

Borders Example – FS9

The maps below demonstrate FS9 ObjectDetailLayerBorders in the Venezuela – Guyana
– Suriname – French Guiana region of South America. Map size 1000 x 800 NM.

ObjectDetailLayerBorders = 0x1 ObjectDetailLayerBorders = 0x2

ObjectDetailLayerBorders = 0x3

FS9 FS9

FS9

42

LayerGridLines
FSX Only

LayerGridLines does not appear to be functional.

43

LayerRangeRings
FSX Only

LayerRangeRings adds range rings at prescribed intervals centered on the aircraft
position A:PLANE LATITUDE and A:PLANE LONGITUDE. Range rings should be
displayed only when TrackUp = 0 (top of the map is true North) and when Zoom is less
than 500 km (270 NM).

� LayerRangeRings (bool)

LayerRangeRings controls whether or not the layer is displayed. Any number other than
0 will display the layer. A zero results in no rendering.

Example XML

<LayerRangeRings> 1 </LayerRangeRings>

� DetailLayerRangeRings

DetailLayerRangeRings is not functional.

� TextDetailLayerRangeRings

TextDetailLayerRangeRings is not functional. Text labels of the range, or radius, of the
circle are always drawn regardless of the value for TextDetailLayerRangeRings. The text
label position, size, and units (NM) cannot be changed by the user. The label appears
inside the ring, and its position is a function of ring interval and Zoom factor. It can
appear in all four quadrants.

� ObjectDetailLayerRangeRings (nmiles enum)

ObjectDetailLayerRangeRings is the range increment between rings in Nautical Miles.
Only integer values (enum) are accepted.

The default unit for range rings is Nautical Mile. It’s impractical to try to achieve
different range ring units such as KM because the text label always displays “NM” and
fractional range values are not permitted. Even changing the measurement system to
metric in Options > Settings > General will not change range ring units of NM.

44

Range Ring Center

Range rings are centered on the users aircraft position, A:GPS POSITION LAT and
A:GPS POSITION LON (1), or A:PLANE LATITUDE and A:PLANE LONGITUDE, but not
CustomDraw Latitude and Longitude which define the center of the map.

If the map center is changed using CenterX and CenterY or by panning with
PanHorizontal and PanVertical, the range rings will still remain centered on A:GPS
POSITION LAT and A:GPS POSITION LON / A:PLANE LATITUDE and LONGITUDE.

Range Ring Center in Multiplayer Air Traffic Controller Radar Gauge

In a multiplayer Air Traffic Controller session, Flight Simulator loads A:GPS POSITION
LAT and LON (see radar.xml) with the coordinates of the Tower View (the latitude and
longitude of the <SceneryObject> within <Tower>) found in the airport bgl file.

Note that the Tower coordinates can be displayed in a Nearest Traffic search by setting
ITrafficInfo:Filter bits #4 and #1 and viewing (C:ItrafficInfo:C:PLANE LATITUDE,
degrees) and LONGITUDE. Refer to ITrafficInfo chapter for information on Nearest
Traffic searches. Tower View latitude and longitude are not the same as
WaypointAirportLatitude and Longitude nor are the Control Tower coordinates
retrievable as gps.dll variables.

Projection Change at 500,000 Meter Range

FSX changes map projections at 500,000 meter (~270 NMiles) Range.

From 80 to 499,999 meters Range, FSX uses a Sinusoidal Projection that is characterized
by equal north-south and east-west map scales at all points on the globe. This yields
range rings that are circular as demonstrated in Figure A on the following page.

At 500,000+ meters Range, FSX uses the Equidistant Cylindrical Platte Carrée projection.
In this projection, the north-south and east-west map scales are no longer equal except
at the Equator and east-west map distances are progressively stretched as latitude
increases. This results in the map view shown in Figure B (look at the width of the
State of Kansas, USA). LayerRangeRings can only draw circular rings, however, so as a
result, rings drawn when Zoom is 500,000 meters or greater (270 NM or greater) are
accurate in the North-South direction only, but very inaccurate in the East-West
direction (Fig. B). This gets worse as latitudes increase away from the Equator.

The elliptical rings in Figure C are accurate, but these had to be drawn using FSX Ellipse
Objects, not LayerRangeRings.

LayerRangeRings should not be used when Zoom exceeds 500,000 meters (when Zoom
Factor is 270 NM or greater).

45

RangeRings: TrackUp=0 only

Range rings reflect accurate distance only when TrackUp=0 and Zoom is less than
500km. Range Rings are really an Air Traffic Controller radar gauge feature. ATC radar
is normally configured with North up (TrackUp=0).

� ColorLayerRangeRings

ColorLayerRangeRings is the color applied to the range rings and associated text labels.

The default color is a lime green shade:

Blue: 0 Green: 197 Red: 0 BGR Hex: 0x00C500

(1) A:GPS POSITION LAT and A:GPS POSITION LON are updated every one second.
A:PLANE LATITUDE and A:PLANE LONGITUDE are updated every gauge update cycle.
For most (but not all - TAWS) map purposes, A:GPS POSITION LAT, LON is sufficient.

Range: Zoom Factor = 269.9784 NM
499,999 Meters

A B

C

Range: Zoom Factor = 269.9785 NM
500,000 Meters

Range: Zoom Factor = 269.9785 NM
500,000 Meters

LayerRangeRings always draws circular
rings as shown in Figures A and B.

The rings drawn in Figure B are
inaccurate, however, because of the
change to the Platte Carrée map
projection where N-S and E-W map
scales are no longer equal.

The elliptical rings in Figure C are
accurate, but had to be drawn using FSX
Ellipse Objects, not LayerRangeRings.

Kansas Kansas

Kansas

Map Center Latitude 38.0655° North
Ring Interval 100 NM

Map Center Latitude 38.0655° North
Ring Interval 100 NM

Map Center Latitude 38.0655° North
Ring Interval 100 NM

100 NM

200 NM

300 NM

300 NM

200 NM

100 NM

100 NM

200 NM

300 NM

RANGE RING
DISTANCE NO LONGER ACCURATE

RANGE ELLIPSE
DISTANCE IS ACCURATE

RANGE RING
DISTANCE IS ACCURATE

46

LayerAirports

LayerAirports renders airport symbols at the location specified by
WaypointAirportLatitude and WaypointAirportLongitude. CustomDraw map replicates
the symbols used on U.S. VFR Aeronautical Charts as shown below:

The type of airport, symbol, text label, and colors can be controlled through specification
of parameters in the LayerAirports group.

� LayerAirports (bool)

LayerAirports controls display of the layer. Any number other than 0 will display the
layer. A zero results in no rendering.

Example XML:

<LayerAirports> 1 </LayerAirports>

� DetailLayerAirports (enum)

DetailLayerAirports controls the type of symbol displayed. Only one index value can be
selected at a time.

47

DetailLayerAirports Index

 -1 = Default 1 = Dot 3 = Circle Rwy 5 = Runways

 0 = Draw nothing 2 = Circle 4 = Block Rwy

• -1 = Default. Flight Simulator automatically chooses the airport symbol type
depending on Zoom setting as part of its default de-cluttering scheme:

FSX Index Zoom range (m) ZoomFactor range (NM)

Runways 5 80 11,050 0.0432 5.9665

Block Rwy 4 11,051 55,250 5.9671 29.8326

Circle Rwy 3 55,251 110,500 29.8332 59.6652

Circle 2 110,501 552,500 59.6658 298.3261

Dot 1 552,501 2,965,000 298.3267 1600.9719

Nothing 0 2,965,001 5,000,000 1600.9725 2699.7840

• 0 = Draw nothing

• Index 1 through 5. The user specifies type of airport symbol to display

Example XML:

<DetailLayerAirports> 3 </DetailLayerAirports>

Airport Symbol Orientation

Airport symbol index 3, 4, and 5 (Circle Rwy, Block Rwy, and Runways) are oriented
according to magnetic direction of the runway(s) as demonstrated above. The 1 screen
pixel size symbol Index 1 Dot is not discernable in this screen shot reproduction.

48

� TextDetailLayerAirports (enum)

TextDetailLayerAirports controls the type of text labeling that is displayed. The text
display is cumulative such that Index 2 = Index 1 plus Index 2, Index 3 = Index 1 plus
Index 2 plus Index 3, and so forth.

TextDetailLayerAirports Index

-1 = Default 1 = Ident
3 = Elevation &
Runway Length

5 = Runway
Numbers

0 = Draw
nothing

2 = Name
4 = Control and
Advisory Freq

• -1 = Default. Flight Simulator automatically chooses the airport text label

depending on Zoom setting as part of its default de-cluttering scheme. The
values below represent zoom ranges within which the corresponding text
information is displayed. The default is affected also by the screen resolution as
shown in the FSX examples. The numbers for one screen resolution compared
to another are proportional, but I don’t understand the details of why they are
different.

DEFAULT TEXT DISPLAY ZOOM RANGES

FSX: 1600 x 1200 FSX: 1600 x 900
Zoom range (m) ZoomFactor range (NM) Zoom range (m) ZoomFactor range (NM)

Runway Numbers 80 to 4,447 0.043 to 2.401 80 to 3,316 0.043 to 1.790

Frequencies 80 to 10,970 0.043 to 5.923 80 to 8,177 0.043 to 4.415

Elevation & Length 80 to 14,825 0.043 to 8.005 80 to 11,050 0.043 to 5.967

Name 80 to 22,237 0.043 to 12.007 80 to 16,575 0.043 to 8.950

Ident 80 to 148,250 0.043 to 80.049 80 to 110,500 0.043 to 59.665

Nothing 148,251 to 5,000,000 80.049 to 2699.784 110,501 to 5,000,000 59.666 to 2699.784

FSX: Permissible Zoom range for fs9gps:Map is 80 to 5,000,000 meters

FS9: 1600 x 1200
Zoom range (m) ZoomFactor range (NM)

Runway Numbers 100 to 8,745 0.054 to 4.722

Frequencies 100 to 21,862 0.054 to 11.805

Elevation & Length 100 to 43,725 0.054 to 23.610

Name 100 to 145,750 0.054 to 78.699

Ident 100 to 291,500 0.054 to 157.397

Nothing 291,501 to 5,000,000 157.398 to 2699.784

FS9: Permissible Zoom range for fs9gps:Map is 100 to 5,000,000 meters

• 0 = Draw nothing

• 1 = IDENT. The 3 to 4 character WaypointAirportIdent of the airport. The SDK
refers to this as the ICAO.

• 2 = Airport Name WaypointAirportName plus Ident in parentheses.

49

• 3 = 2 plus airport elevation WaypointAirportElevation and length of the longest
runway WaypointAirportRunwayLength. Elevation and length are reported in U.S.
System (ft) or Metric (m) depending upon Flight Simulator Settings (Settings –
General – International – Units of Measure).

• 4 = 3 plus Control and Advisory frequencies. The control (Control Tower or
CTAF - Common Traffic Advisory Frequency) and advisory (ATIS - Automated
Terminal Information Service, or AWOS - Automated Weather Observation
System) frequencies are listed if they are available. In the case of multiple
control or advisory frequencies available for an airport, the frequency with the
lowest WaypointAirportFrequency Index is displayed.

• 5 = 4 plus Runway numbers displayed at the appropriate end of each runway.

TextDetailLayerAirports Example

� ObjectDetailLayerAirports (decimal or hexadecimal)

ObjectDetailLayerAirports controls the types of airports that are displayed. A Decimal or
Hexadecimal number is used that is in the form of a bit table filter similar to filters in
Nearest searches (reference: GPS Guidebook NearestIntersectionCurrentFilter, page 62-
63).

Bit Name Bit Name Bit Name Bit Name

0 Towered 2 Hard Surface 4 Water 6 Private
1 Not Towered 3 Soft Surface 5 Heliport

Combinations of airport types can be selected according to the following rules:

ObjectDetailLayerAirports Rules

1. Bit 0 or 1, or both (Towered or Not Towered) must always be selected

2. Bit 2 or 3, or both (Hard or Soft Surface) must be selected for LAND (non-Water
or Heliport) airports

As an example, if all Water, Hard and Soft Surface, Towered and Non-Towered airports
are to be displayed, then the selection in binary number format is:

50

64 32 16 8 4 2 1 - Decimal equivalent

P
R
IV

A
T
E

H
E
LI

P
O

R
T

W
A
T
E
R

S
O

F
T
 S

U
R
F
A
C
E

H
A
R
D

 S
U

R
F
A
C
E

N
O

T
 T

O
W

E
R
E
D

T
O

W
E
R
E
D

6 5 4 3 2 1 0 - Bit number (Bit 0 thru Bit 6)

0 0 1 1 1 1 1 - ObjectDetailLayerAirports selections

The Binary number is 0 0 1 1 1 1 1 . The Decimal equivalent is 31 and the

Hexadecimal is 1F. The appropriate XML is therefore either:

<ObjectDetailLayerAirports> 31 </ObjectDetailLayerA irports>

or,

<ObjectDetailLayerAirports> 0x1F </ObjectDetailLaye rAirports>

ObjectDetailLayerAirports for individual airport types, together with DetailLayerAirports
symbol options is shown in the diagram below:

51

� TextColorLayerAirports (BGR hexadecimal)

TextColorLayerAirports controls color of the Towered airport text label. The text color
for Untowered airports always matches the airport symbol color for Untowered airports.
This is the same for both FS9 and FSX. Its format is hexadecimal Blue-Green-Red.

For both FS9 and FSX, the default TextColorLayerAirports color is the same as the
airport symbol.

� ColorLayerAirports (BGR hexadecimal) (FS9 only)

FS9 ONLY: ColorLayerAirports controls color of Towered airport symbols only. It does
not affect the default magenta color applied to Untowered airports. Its format is
hexadecimal Red-Green-Blue and with the hex values concatenated from right to left (in
other words, GBR).

Example XML:

<ColorLayerAirports> 0xFF9400 </ColorLayerAirports>

The default color for Towered Airports is a blue-green shade:

Blue: 173 Green: 132 Red: 8 BGR Hex: 0xAD8408

The default, and only, color for Untowered airports is a magenta shade:

Blue: 206 Green: 0 Red: 197 BGR Hex: 0xCE00C5

52

� ColorLayerAirportsTowered (BGR hexadecimal) (FSX only)

FSX ONLY: ColorLayerAirportsTowered controls color of Towered airport symbols. Its
format is hexadecimal Red-Green-Blue and with the hex values concatenated from right
to left (in other words, GBR).

Example XML:

<ColorLayerAirportsTowered> 0xFF9400 </ColorLayerAi rportsTowered>

The default ColorLayerAirportsTowered color is a blue-green shade:

Blue: 173 Green: 132 Red: 8 BGR Hex: 0xAD8408

� ColorLayerAirportsUntowered (BGR hexadecimal) (FSX only)

FSX ONLY: ColorLayerAirportsUntowered controls color of Untowered airport symbols.
Its format is hexadecimal Red-Green-Blue and with the hex values concatenated from
right to left (in other words, GBR).

Example XML:

<ColorLayerAirportsUntowered> 0xCE00C5 </ColorLayer AirportsUntowered>

The default ColorLayerAirportsUntowered color is a magenta shade:

Blue: 206 Green: 0 Red: 197 BGR Hex: 0xCE00C5

53

LayerVORs

LayerVORs draws VORs and associated text labels at locations defined in the gps.dll
database (WaypointVorLatitude and WaypoinyVorLongitude).

� LayerVORs (bool)

LayerVORs controls whether or not the layer is displayed. Any number other than 0 will
display the layer. A zero results in no rendering.

Example XML:

<LayerVors> 1 </LayerVors>

� DetailLayerVORs (enum)

DetailLayerVORs controls the type of VOR symbol displayed. There is not much of a
selection; it’s either a one pixel dot or a VOR symbol, as shown in the figure below.
Choose DetailLayerVORs = 1 for a dot, or 2 for a symbol. When 2 is chosen, then
WaypointVorType automatically determines which symbol style is displayed.

54

The FSX SDK lists categories for the following VOR Types:

VOR Type # VOR Type

0 UNKNOWN 4 TACAN

1 VOR 5 VORTAC

2 VOR_DME 6 ILS

3 DME 7 VOT

http://msdn.microsoft.com/en-us/library/cc526954.aspx#VorType

However, not all categories are populated in the gps.dll database; only VOR Type 1, 2,
and 3 are found. The remaining VOR Types are grouped in with Type 2 and 3 VORs or
are not founds in the database:

• TACANs (Type 4) are included in the Type 3 DME category

• VORTACs (Type 5) are included in the Type 2 VOR_DME category

• ILS (Type 6) belong to the Airport Group

• VOT (Type 7) are not populated because VOTs are meaningless in Flight
simulator

Consequently, when fs9gps:Map displays VORs, it can either use a single pixel dot, or
one of three symbols that represent 5 different real-world VOR types.

The default (no entry) DetailLayerVORs is 2.

� TextDetailLayerVORs (enum)

TextDetailLayerVORs is an integer index representing the type of text label to display:

-1 = Default

 0 = Nothing

 1 = Ident

 2 = Ident + Frequency

 3 = Ident + Frequency + Ident Morse

The following is an example of the Limoges VOR/DME, Limoges, France:

The default TextDetailLayerVORs, -1 or no entry, results in a 1 = Ident label.

1 2 3

55

� ObjectDetailLayerVORs (decimal or hexadecimal)

ObjectDetailLayerVORs has very little meaning. The SDK indicates that a Decimal or
Hexadecimal number is used. This is in the form of a bit table filter similar to filters in
Nearest searches (reference: GPS Guidebook NearestIntersectionCurrentFilter, page 62-
63). In this case, however, there is only one valid selection, VOR.

ObjectDetailLayerVORs
Bit # Name Bit # Name

-1 DEFAULT 0 DRAW NOTHING 0 VOR 1 VOT

Although this is the simplest possible bit table case, to be thorough, the bit selection
process is still demonstrated below. To select VOR, choose bit 0 as indicated:

2 1 - Decimal equivalent

V
O

T

V
O

R

1 0 - Bit number (Bit 0 and Bit 1)

0 1 - ObjectDetailLayerVORs selections

The decimal equivalent of binary 0 1 is 1, and the hexadecimal is likewise equal to 1.

The XML:

<ObjectDetailLayerVORs> 1 </ObjectDetailLayerVORs>

or,

<ObjectDetailLayerVORs> 0x1 </ObjectDetailLayerVORs >

VOT is not a valid choice principally because VOTs (VOR test transmitters) are not found
in the gps database. Furthermore, because they are testing facilities for real aircraft
VOR receivers, they are meaningless in Flight Simulator to begin with.

The default, -1 or no entry, results in VOR selected.

One other point, the Type of VORs displayed cannot be filtered in
ObjectDetailLayerVORs as can be done in ObjectDetailLayerAirspaces, for example.

Bottom line, a zero and any other even number, positive or negative, results in no
display. Any odd number, positive or negative, results in a display of the VOR layer.

56

� ColorLayerVORs (BGR hexadecimal)

ColorLayerVORs controls the color of the symbol, DetailLayerVORs. The default (no

entry) color is blue:

Blue: 255 Green: 0 Red: 0 BGR Hex: 0xFF0000

� TextColorLayerVORs (BGR hexadecimal)

TextColorLayerVORs controls the color of the symbol, TextDetailLayerVORs. Syntax for
this variable is the same as for ColorLayerVORs.

If this variable is not included in the script, then the no entry default color is the same
color as the VOR symbol.

57

LayerNDBs

LayerNDBs draws Non Directional Beacons and associated text labels at locations
defined in the gps.dll database (WaypointNdbLatitude and WaypointNdbLongitude).

� LayerNDBs (bool)

LayerNDBs controls whether or not the layer is displayed. Any number other than 0 will
display the layer. A zero results in no rendering.

Example XML:

<LayerNDBs> 1 </LayerNDBs>

� DetailLayerNDBs (enum)

DetailLayerNDBs controls the type of NDB symbol displayed, either a one pixel dot or a
NDB symbol. The number of rings displayed on the NDB is a function of Zoom. Other
than the number of rings which is displayed automatically, the size cannot be changed.

All NDB Types (WaypointNdbType) are displayed with the same symbol as shown below.
ILS Marker Beacons cannot be drawn by fs9gps:Map.

o DetailLayerNDBs = -1 or omitted. Default. NDB symbol is displayed. The
number of rings is a function of Zoom

o DetailLayerNDBs = 0. Nothing is drawn

o DetailLayerNDBs = 1. Dot. A single pixel is drawn. Independent of Zoom

o DetailLayerNDBs = 2+. NDB symbol is displayed. The number of rings is a
function of Zoom

5 Rings

80

13,177

7.1

4 Rings

13,178

15,813

8.5

3 Rings

15,184

19,766

10.7

2 Rings

19,767

26,535

14.3

1 Ring

26,536

39,533

21.3

0 Rings

39,534

296,500

160.1

1 Pixel

296,501

2,965,000

1601.0

Zoom Min (m):

Zoom Max (m):

Zoom Max (NM):

Dot = 1 NDB Symbol = -1 or 2+

58

� TextDetailLayerNDBs (enum)

TextDetailLayerNDBs determines which text label to display. The label is displayed to
the left of the NDB symbol and cannot be re-positioned.

TextDetailLayerNDBs 1, 2, and 3 are independent of Zoom level. Text displayed using
TextDetailLayerNDBs = -1 is a function of Zoom, however, as follows:

� ObjectDetailLayerNDBs (bool)

ObjectDetailLayerNDBs is redundant with LayerNDBs. Any number other than 0 will
display the layer. A zero results in no rendering. If ObjectDetailLayerNDBs is omitted,
the default is to display the layer.

• -1 or omitted. Default. Text displayed is a function of Zoom

• 0 = No text drawn

• 1 = NDB Ident only

• 2 = NDB Ident + Frequency (MHz)

• 3 = NDB Ident + Frequency (MHz) + Ident Morse Code

Ident +
Freq +
Morse

80

14,825

8.0

Ident +
Freq

14,826

59,300

32.0

Ident

59,301

296,500

160.1

Zoom Min (m):

Zoom Max (m):

Zoom Max (NM):

No Text
Label

296,501

5,000,000

2699.9

TextDetailLayerNDBs = -1

59

� ColorLayerNDBs (BGR hexadecimal)

ColorLayerNDBs controls the color of the NDB symbol and Morse Code. The default
ColorLayerNDBs is a magenta shade:

Blue: 132 Green: 0 Red: 255 BGR Hex: 0x8400FF

� TextColorLayerNDBs (BGR hexadecimal)

TextColorLayerNDBs controls the color of the Ident and Frequency text. The default
color is a magenta shade:

Blue: 132 Green: 0 Red: 255 BGR Hex: 0x8400FF

NDB Color Example

An example demonstrating ColorLayerNDBs and TextColorLayerNDBs:

• ColorLayerNDBs is 0xFF0000 (blue)

• TextColorLayerNDBs is 0x00FF00 (lime)

60

LayerILSs

LayerILSs draws Instrument Landing System components (localizer cone or localizer
course line) for approaches utilizing a localizer (LDA, LOC, or ILS approach types).
These correspond to FlightPlanApproachType = 10, 11, and 13. Microwave Landing
System approaches, FlightPlanApproachType = 12, are absent in the stock gps database
as far as I know, although there is limited MLS deployment in the real world.

FSX offers two ILS symbols (cone and course line) while FS9 is limited to cone only.

� LayerILSs (bool)

LayerILSs controls whether or not the layer is displayed. Any number other than 0 will
display the layer. A zero results in no rendering.

Example XML:

<LayerILSs> 1 </LayerILSs>

� DetailLayerILSs (bool)

DetailLayerILSs is redundant with LayerILSs. Any number other than 0 will display the
layer. A zero results in no rendering.

� TextDetailLayerILSs (enum)

TextDetailLayerILSs is non-functional.

� ObjectDetailLayerILSs (enum)

ObjectDetailLayerILSs determines which ILS symbol is used, a localizer cone or a localizer
course line.

• ObjectDetailLayerILSs = -1 or 1. Localizer Cone. This represents the shape of the
localizer (horizontal guidance) beams.

• ObjectDetailLayerILSs = 2. Localizer Course Line. FSX only. Added as part of the
ATC radar feature.

The figures on the following page show FS9 and FSX localizer symbols associated with
ILS and LOC approaches at Cincinatti / Northern Kentucky International Airport (KCVG),
USA.

61

Localizer Cone Symbol Dimensions

Localizer cone width varies with runway length. In Flight Simulator as in the real world,
localizer beams are 3 to 6 degrees wide. Localizer antennas are tuned for a beam width
of 700 feet at the landing threshold of the runway they serve. Antenna arrays are
predominantly located about 1010 feet or more from the stop end of the runway. The
1000+ ft gap is required to provide a runway safe area for aircraft takeoffs and landings
that are a little too low. As far as I can tell, the stock FS database accounts for accurate
coordinates of localizer array locations and resulting localizer cone angles.

In the example below, the landing threshold is about 10,000 feet from the antenna
array, producing a beam angle of 4 degrees. The longer the runway, the narrower the
beam. Flight Simulator’s localizer cone symbol reflects this width as shown by the
difference between the symbols for KLUK ILS Rwy 21L (6101 foot runway) at ~ 5.6° and
KCVG ILS Rwy 27 (12,000 foot runway) which is ~ 3°.

Length of the cone symbol drawn in fs9gps:Map is usually around 11,800 meters.

62

Localizer Course Line Symbol Dimensions

The localizer course line extends about 13.5 NMiles outward from the antenna array
which is roughly half of the distance at which the localizer indicator becomes active in
the aircraft in a straight-in approach.

Localizer Orientation

Except for irregular fs9gps database errors, course lines and cone orientation are co-
linear with the runway centerline for ILS and LOC approaches and have an offset
orientation for ‘Offset’ LOC and LDA approaches which, by definition, are at angles to
the runway centerline.

63

� ColorLayerILSs (BGR hexadecimal)

ColorLayerILSs controls color of the ILS symbol. If ColorLayerILSs is omitted from the
XML script, the default color is lime:

Blue: 0 Green: 255 Red: 0 BGR Hex: 0x00FF00

� TextColorLayerILSs (BGR hexadecimal)

TextColorLayerILSs is non-functional.

64

LayerIntersections

LayerIntersections draws Enroute and Terminal intersections at locations defined in the
WaypointIntersections group.

� LayerIntersections (bool)

LayerIntersections controls whether or not the layer is displayed. Any number other
than 0 will display the layer. A zero results in no rendering.

Example XML:

<LayerIntersections> 1 </LayerIntersections>

� DetailLayerIntersections (enum)

DetailLayerIntersections controls the style of intersection symbol, either a single pixel
dot or a triangle.

• DetailLayerIntersections = -1 or omitted. Triangle

• DetailLayerIntersections = 0. Draw nothing

• DetailLayerIntersections = 1. Single pixel dot

• DetailLayerIntersections = Any number other than 0 or 1. Triangle

� TextDetailLayerIntersections (bool)

TextDetailLayerIntersections controls the display of the intersection Ident. The text is
positioned to the right of the intersection symbol at about the 4 o’clock position and
cannot be moved. Any number other than zero will display the Ident; zero will hide
Ident.

DetailLayerIntersections: 1 -1 or 2

65

� ObjectDetailLayerIntersections (bool)

ObjectDetailLayerIntersections is redundant with LayerIntersections. Any number other
than 0 will display the layer. A zero results in no rendering.

� ColorLayerIntersections (BGR hexadecimal) FS9 Only

ColorLayerIntersections is a FS9 variable that controls the color of enroute intersections
only. Terminal intersections and text labels in FS9 are always blue (0xCE0000). If
ColorLayerIntersections is omitted from the XML script, the default color is magenta.

Blue: 255 Green: 0 Red: 255 BGR Hex: 0xFF00FF

� ColorLayerIntersectionsEnroute (BGR hexadecimal) FSX Only

ColorLayerIntersectionsEnroute is an FSX Only variable that controls the color of enroute
intersections and the Ident text label. If it is omitted from the XML script, the defauilt
color is magenta.

Blue: 255 Green: 0 Red: 255 BGR Hex: 0xFF00FF

� ColorLayerIntersectionsTerminal (BGR hexadecimal) FSX Only

ColorLayerIntersectionsTerminal is an FSX Only variable that controls the color of
terminal intersections and the Ident text label. If it is omitted from the XML script, the
defauilt color is a deep blue shade.

Blue: 206 Green: 0 Red: 0 BGR Hex: 0xCE0000

� TextColorLayerIntersections (BGR hexadecimal) FS9 and FSX

TextColorLayerIntersections controls the Ident text color for enroute intersections only.
It does not affect terminal intersections. If it is omitted from the XML script, the default
color the same as the enroute intersection symbol.

66

67

Additional points

Figure A shows intersections displayed by LayerIntersections in the vicinity of Achorage,
Alaska, USA.

• Enroute intersections are colored the default magenta �. These are
intersections used for cross-country navigation purposes and are often part of
Victor and Jet Airway routes. Enroute waypoints often serve as approach
transition waypoints.

• Terminal waypoints are displayed in green � in this example. These
intersections are used by Terminal and approach procedures into and out of
airports.

Figure B shows the flight path for the ILS Rwy 14 Approach, IVANN Transition into
Anchorage International Airport (PANC).

• The Ident text color of terminal waypoints used by the approach (FLAND,
YOHNN, CHAVI, CARDD, KANSKY) is the same color (black in this example) as
the approach flight path. ColorLayerFlightPlan color selections override
LayerIntersections color selections in display of Flight Plan and Approach
elements, and the symbol color of terminal waypoints included in the approach
revert to the default blue color.

• The ICAO of terminal intersections contains the Ident of the “owning airport” in
ICAO character positions 4 through 7. In this example, PANC. The ICAO of
enroute intersections does not contain the Ident of an “owning airport” (e.g.,
IVANN).

• Approach Waypoint Index 6 is a Runway Waypoint used by Flight Simulator to
define the runway location. All approaches include such a waypoint. It is
displayed when LayerFlightPlan is enabled and an approach is loaded, but absent
otherwise.

68

LayerAirspaces

LayerAirspaces draws airspace boundaries. LayerAirspaces has more filtering capability
(i.e., include only selected airspace types) but less color flexibility than most other layers.

� LayerAirspaces (bool)

LayerAirspaces controls whether or not the layer is displayed. Any number other than 0
will display the layer. A zero results in no rendering.

Example XML:

<LayerAirspaces> 1 </LayerAirspaces>

� DetailLayerAirspaces (bool)

DetailLayerAirspaces is entirely redundant with LayerAirspaces.

� TextDetailLayerAirspaces

TextDetailLayerAirspaces is non-functional.

� ObjectDetailLayerAirspaces (decimal or hexadecimal)

ObjectDetailLayerAirspaces is a filter used to select which types of airspaces to draw. It
is the same filter applied by NearestAirspaceQuery discussed in FS9GPS Module
Guidebook (pp 81-82). Input to ObjectDetailLayerAirspaces can be decimal or
hexadecimal format but not binary.

A check of airspaces found in the fs9gps database returned 19,261 unique airspace
sectors as summarized in the table below.

The database scan was widespread and although probably not 100% comprehensive, it
was close to it and I believe very representative of what is in the database. From the
returns, a few observations can be made:

• Not all Airspace ‘Types’ actually exist in the database. TOWER, CLEARANCE,
GROUND, DEPARTURE, APPROACH, NATIONAL_PARK, MODE_C, and RADAR
Airspace Types are all absent.

• Not all Airspace Types populated in the database can, or should, be drawn by
LayerAirspaces. CENTER, CLASS_A, CLASS_F, CLASS_G, and TRAINING Airspace
Types are not drawn.

69

AIRSPACE NAME TYPE COUNT DRAWN? AIRSPACE NAME TYPE COUNT DRAWN?

CENTER 1 4196 � APPROACH 13 0 �

CLASS_A 2 307 � MOA 14 623 �

CLASS_B 3 574 � RESTRICTED 15 3285 �

CLASS_C 4 1687 � PROHIBITED 16 833 �

CLASS_D 5 2573 � WARNING 17 391 �

CLASS_E 6 1926 � ALERT 18 45 �

CLASS_F 7 9 � DANGER 19 2211 �

CLASS_G 8 74 � NATIONAL_PARK 20 0 �

TOWER 9 0 � MODE_C 21 0 �

CLEARANCE 10 0 � RADAR 22 0 �

GROUND 11 0 � TRAINING 23 527 �

DEPARTURE 12 0 � Total: 19,261

Airspace Definitions

Flight Simulator incorporates airspace boundaries defined by the air traffic authorities of
various countries around the world. Most countries adopt the 1990 ICAO Airspace
classification for the type of air traffic control, that is, the flight rules (IFR, SVFR, or VFR,
ATC communication, speed, and separation protocol) applied within each airspace class,
however, country-by-country adaptation and boundary definitions for the airspace
classes vary widely. Countries are free to select and apply only those Airspace Classes
that are suitable to their needs and to develop their own chart symbol styles as well.

As an example, some countries do not use Class B airspace. Others designate a blanket
layer between certain altitudes (therefore lacking geographic boundaries that can be
drawn on a map) as Class B, and yet others apply Class B to familiar ‘upside down
wedding cake’ boundaries that are easily drawn on a map.

Flight Simulator’s line styles and colors for each Class are consistent across all countries,
but in the real world they are not.

Center Airspace

Center (Airspace Type 1) is not an Airspace, per se. Center airspace boundaries
represent the areas of responsibility of individual enroute air traffic control centers (Air
Route Traffic Control Centers - ARTCCs in the US, Area Control Centers in Europe). The
boundaries of Centers determine where the Flight Simulator ATC function hands-off
aircraft to the subsequent Center. In FS, only Center airspaces have a frequency and a
frequency name, NearestAirspaceCurrentFrequency and CurrentFrequencyName. The
CurrentFrequencyName is always “Center”. Center altitude boundaries are defined as
NearestAirspaceCurrentMinAltitude = 0 (surface) and CurrentMaxAltitude = 100000
meters, or edge of space. Center Airspace boundaries are not drawn by LayerAirspaces
nor found on US Sectional (VFR) charts which are the basis for the LayerAirspaces
format.

70

Air Traffic Control-Based Airspace Classes

ATC-based Airspace Classes include Class A through Class G. These correspond to
Flight Simulator Airspace Types 2 – 8 (NearestAirspaceCurrentType). The first five,
Classes A through E, are Controlled Airspaces, and where geographic boundaries for
these airspaces exist in the database, Flight Simulator draws them.

However, geographic boundaries that can be drawn on a map do not always exist in FS
or the real world. Class A Airspace is not used by all countries, but where it is used,
such as in the United States and Russia, it is a blanket airspace defined by altitude limits
but not geographic boundaries. Consequently, Class A Airspaces cannot be drawn by
LayerAirspaces even though Class A airspaces are found in the database.

Additionally, US Class E Airspace generally exists everywhere below 18,000 ft there is
not already Class A, B, C, or D or G Airspace, and everywhere above FL60.
“Everywhere” lacks boundaries that can be drawn, so instead, FS draws Class E
boundaries only where they extend to the ground surface.

Class F and G are Non-Controlled Airspaces and are not drawn in Flight Simulator.

Special Use Airspaces

Special Use Airspace’s (SUA) purpose is to advise pilots of activities or areas that have
special flight rules or may be hazardous at certain times. Seven SUA types are found in
the Flight Simulator gps database and six of these are drawn by LayerAirspaces.

SUA Name

FS
Airspace

Type

FS

Drawn?
Controlled
Airspace?

MOA 14 Yes No
Military. USA. Purpose is to separate high-speed military
traffic from IFR traffic. VFR also permitted but with caution

RESTRICTED 15 Yes Yes
Not prohibited to fly, but unauthorized penetration not allowed
and possibly dangerous at certain times (eg, live military firing,
bombing ranges in US)

PROHIBITED 16 Yes No* Flight of aircraft is not permitted

WARNING 17 Yes No
Advisory in nature. Airspace over domestic or international
waters that extends from three NM beyond shore

ALERT 18 Yes No
Training Area: US. No restrictions but use caution. Alert
areas may contain a high volume of pilot training or unusual
activity. All but 2 Alert areas are in US. Other 2 are in S Korea

DANGER 19 Yes No
Military usually. Non-US. Unauthorized penetration not
allowed and possibly dangerous at certain times. Most are
military operations areas (high speed a/c, live firing, etc)

TRAINING 23 No No Training Area: Non-US.

71

LayerAirspaces Line Format

LayerAirspaces adopts the U.S. F.A.A. Sectional Chart (VFR) airspace symbol format.

A comparison of ICAO (most of the non-US world), US F.A.A. Sectional, and Flight
Simulator airspace boundary styles is shown below. Some points:

• The basis for LayerAirspaces line styles is the US F.A.A. VFR Sectional Chart, not
High and Low Altitude Enroute charts which use different airspace symbol sets

• US F.A.A. Sectional charts depict Class E Surface, 700/1200 foot AGL Transition,
E at Gsurface, and High Altitude MSL (zipper line) Areas. Within US Airspace,
LayerAirspaces draws only the Class E Surface Airspace at ground surface

• FAA Sectionals use a magenta color for ALERT SUA whereas FS uses blue

• LayerAirspaces provides no text labeling of airspace name or altitude limits

• LayerAirspaces applies US FAA Sectional format world-wide, even in countries
that use ICAO Standard symbol format or their own airspace boundary format

• The FS airspace database is not current. Regular updates occur in the real world

72

Line widths and colors (essentially) cannot be changed in LayerAirspaces. Additionally,
line widths are constant and are not scaled according to Zoom.

Examples of LayerAirspaces in FSX

These figures show airspace below
14,500’ MSL down to the base of Class E
or Class G and points out differences
between FS and real charts. However,
the lack of Class E detail has little
significance in FS even in multiplayer
controller simulations.

73

74

� ColorLayerAirspaces (BGR hexadecimal)

ColorLayerAirspaces is not really functional the way one would expect. Although
ColorLayerAirspaces can be specified, it is applied to all airspace types, and most
importantly, it has the effect of only dulling, or dimming the default color only, but not
changing it to the specified color. Furthermore, all color choices for ColorLayerAirspaces
darken the default color, never lighten, or brighten it.

Omitting ColorLayerAirspaces or using it with 0xFFFFFF results in the default color,
entering 0x000000 produces black airspace boundary lines.

� TextColorLayerAirspaces

TextColorLayerAirspaces is not functional. Just as there is no TextDetailLayerAirspaces,
there is no color choice either.

75

LayerFlightPlan

LayerFlightPlan draws a waypoint-to-waypoint path of the loaded Flight Plan. Approach
procedures are also drawn after an Approach has been loaded (the Approach becomes
part of the Flight Plan at that point).

� LayerFlightPlan (bool)

LayerFlightPlan controls whether or not the layer is displayed. Any number other than 0
will display the layer. A zero results in no rendering.

Example XML:

<LayerFlightPlan> 1 </LayerFlightPlan>

� DetailLayerFlightPlan (enum)

DetailLayerFlightPlan determines the line style of the Missed Approach path.

• -1 = Default. Dashed Lines for Missed Approach (includes Holding Pattern).
Solid lines for Enroute and Approach flight plan segments. Only Missed
Approach and Holding Pattern can be dashed lines.

• 0 = Draw Nothing

• 1= All Solid lines for Missed Approach (includes Holding Pattern), Enroute , and
Approach flight plan segments

• 2 = Same as Default. Dashed Lines for Missed Approach (includes Holding
pattern). Solid lines for Enroute and Approach flight plan segments

76

� TextDetailLayerFlightPlan (enum)

TextDetailLayerFlightPlan is non-functional.

� ObjectDetailLayerFlightPlan (decimal or hexadecimal)

ObjectDetailLayerFlightPlan controls which Flight Plan and Approach segments are
drawn. It is best thought of as a binary number that represents the choices as
demonstrated below.

8 4 2 1 - Decimal equivalent

W
A
Y
P
O

IN
T
S

M
IS

S
E
D

A
P
P
R
O

A
C
H

A
P
P
R
O

A
C
H

E
N

R
O

U
T
E

3 2 1 0 - Bit number (Bit 0 thru Bit 3)

Fig. A 0 0 0 1 - ObjectDetailLayerFlightPlan selections

Fig. B 0 0 1 1 - ObjectDetailLayerFlightPlan selections

Fig. C 0 1 1 1 - ObjectDetailLayerFlightPlan selections

Fig. D 1 1 1 1 - ObjectDetailLayerFlightPlan selections

As an example, if the user wants to draw the Enroute Flight Plan and Approach
Procedure (Figure B), the appropriate selection is bit 0 and bit 1. The resulting binary

77

number is 0 0 1 1 whose decimal equivalent is 3. The hexadecimal equivalent is
likewise 3.

Example XML:

<ObjectDetailLayerFlightPlan> 3 </ObjectDetailLayer FlightPlan>

or,

<ObjectDetailLayerFlightPlan> 0x3 </ObjectDetailLay erFlightPlan>

The Missed Approach and Holding pattern is added in Figure C, and Waypoint
designations are added in Figure D.

Selecting Waypoints adds the waypoint’s (VFR) Aeronautical Chart symbol and the
waypoint Ident text label to the right of the symbol. The text cannot be re-positioned.

There is no Zoom limit on the Flight Plan display – it is drawn at all Zoom levels, 80 to
5,000,000 meters for FSX, 100 to 5,000,000 meters for FS9.

� ColorLayerFlightPlan (BGR hexadecimal)

ColorLayerFlightPlan controls color of the non-Active Flight Plan leg. If
ObjectDetailLayerFlightPlan Waypoints bit is set, then ColorLayerFlightPlan also controls
the color of the Waypoint Ident text. Its format is hexadecimal Blue-Green-Red.

78

If ColorLayerFlightPlan is omitted from the XML script, the default color is a very pale
blue shade which is suitable when terrain is showing:

Blue: 255 Green: 255 Red: 215 BGR Hex: 0xFFFFD7

The stock gps_500.xml gauge uses a conditional statement within ColorLayerFlightPlan
that sets the color to a medium gray, 0x808080, when no terrain background is showing,
and white when it is.

� TextColorLayerFlightPlan (BGR hexadecimal)

TextColorLayerFlightPlan is non-functional.

� FlightPlanLineWidth (number)

FlightPlanLineWidth controls the width of the Flight Plan line. It is approximately equal
to screen pixel width rendered but can vary according to screen resolution and gauge
configuration settings as demonstrated in the chart below. If FlightPlanLineWidth is
omitted from the XML script or set equal to zero, a 1 screen pixel width line is drawn.

79

� ActiveColorLayerFlightPlan (BGR hexadecimal)

ActiveColorLayerFlightPlan is the color of the active Flight Plan or Approach segment.
The default color if ActiveColorLayerFlightPlan is omitted from the XML script is a
magenta shade:

Blue: 255 Green: 49 Red: 255 BGR Hex: 0xFF31FF

If ObjectDetailLayerFlightPlan Waypoints bit is set, then ActiveColorLayerFlightPlan also
controls the color of the active waypoint Ident text. ActiveColorLayerFlightPlan
overrides ColorLayerFlightPlan for the active segment.

� PastColorLayerFlightPlan (BGR hexadecimal)

PastColorLayerFlightPlan is the color of all past, or completed, Flight Plan segments. As
shown below, PastColorLayerFlightPlan also controls the color of past waypoints Ident
text.

80

LayerApproach

LayerApproach draws a map of approach procedures identified by WaypointAirportICAO,
WaypointAirportCurrentApproach and WaypointAirportCurrentTransition selections. This
layer is limited to the approach procedure and does not include any of the enroute flight
plan legs.

The screen capture on the right shows
the FS9 and FSX Garmin GPS 500
Procedures Page after KICT ILS 19R
Approach, ICT Transition has been
selected. The insert map that displays
this approach procedure uses
variables of the LayerApproach group.
In the stock gps_500 gauge, it is set
up as a separate CustomDraw element
(refer to lines 2720 through 2751 of
the FSX gps_500.xml); it’s not part of
the main CustomDraw fs9gps:Map
element (lines 756 through 783 of the
FSX gps_500.xml).

After an approach has been loaded, it becomes part of the flight plan and will be
rendered in the main map as part of the LayerFlightPlan group.

� LayerApproach (bool)

LayerApproach controls whether or not the layer is displayed. Any number other than 0
will display the layer. A zero results in no rendering.

Example XML:

<LayerApproach> 1 </LayerApproach>

� DetailLayerApproach (decimal or hexadecimal)

DetailLayerApproach controls the approach segments that are displayed. A Decimal or
Hexadecimal number is used that is in the form of a bit table filter similar to filters in
Nearest searches (reference: GPS Guidebook NearestIntersectionCurrentFilter, page 62-
63).

Bit # Name Bit # Name Bit # Name

0 Approach 1 Missed 2 Arrow Head

81

As an example, to draw the approach and missed approach segments, bits 0 and 1 are
selected:

4 2 1 - Decimal equivalent

A
R
R
O

W

H
E
A
D

M
IS

S
E
D

A
P
P
R
O

A
C
H

2 1 0 - Bit number (Bit 0 thru Bit 2)

0 1 1 - DetailLayerApproach selections

The decimal equivalent of binary 0 1 1 is 3. The hexadecimal value is likewise 3. The
XML instruction is:

<DetailLayerApproach> 3 </DetailLayerApproach> or

<DetailLayerApproach> 0x3 </DetailLayerApproach>

The default DetailLayerApproach value is 7, or 0x7.

KICT: ILS 19R Approach, ICT Transition

Binary: 0 0 1; Hex: 0x1

Binary: 1 0 1; Hex: 0x5

Approach

Approach
w/ Arrows

Binary: 0 1 0; Hex: 0x2

Binary: 1 1 0; Hex: 0x6

Missed

Missed
w/ Arrows

Binary: 0 1 1; Hex: 0x3

Binary: 1 1 1; Hex: 0x7

Approach &
Missed

Approach &
Missed
w/ Arrows

82

� TextDetailLayerApproach (enum)

Use of TextDetailLayerApproach has no effect in either FS9 or FSX. There is no text
label associated with LayerApproach.

� ObjectDetailLayerApproach (bool)

Any number other than 0 will display the approach segments selected by
DetailLayerApproach. A zero results in no rendering of the approach segments. This
has the same effect as DetailLayerApproach = 0, and as such is of little use.

� ColorLayerApproach (BGR hexadecimal)

Use of ColorLayerApproach appears to crash the approach map in both FS9 and FSX.
This variable should not be used.

� TextColorLayerApproach (BGR hexadecimal)

Use of TextColorLayerApproach has no effect in either FS9 or FSX. There is no text label
associated with LayerApproach.

� LayerApproachAirport (string)

LayerApproachAirport is the fs9gps ICAO identity of the approach airport. It is the full
ICAO, not the Ident. Equivalent to WaypointAirportICAO.

� LayerApproachAproach (enum)

LayerApproachAirport is the index pointer for the airport approach list. Equivalent to
WaypointAirportCurrentApproach. This index pointer is used to select a specific
approach procedure to display.

� LayerApproachTransition (enum)

LayerApproachTransition is the index pointer for the approach transitions list. Equivalent
to WaypointAirportCurrentTransition. This index pointer is used to select a specific
approach transition to display.

83

� LayerApproachLeg (enum)

LayerApproachLeg is an index pointer to the approach and missed approach segments.
It’s equivalent to FlightPlanWaypointApproachIndex and selecting an index number will
cause the associated leg to be highlighted on the approach map. The KICT ILS 19R
example below shows a 9 waypoint approach which results in 8 approach legs. Valid
choices of LayerApproachLeg are 0 through 8. Leg 5 has been selected, resulting in
display of that leg using LayerApproachLineActiveColor, which in this example, is red.

The default LayerApproachLeg value is 0, which is not associated with an approach leg, so
nothing is highlighted except in the case of a Vectors transition. When a Vectors transition is
selected, a 5 nm leg is added to the Final Approach Fix and highlighted.

84

� LayerApproachAircraftSpeed (number, knots)

An aircraft’s approach groundspeed affects the length of several approach segments
depicted on the approach map. In the example that follows, the length of the outbound
leg of the Initial Approach, entry into the 45° Procedure Turn (PT), and length of the
Holding Pattern legs are all a functions of groundspeed and are rendered according to
LayerApproachAircraftSpeed. LayerApproach assumptions include:

• A two minute 45° straight segment prior to initiating the 180° turn. The
standard for this timed sub-segment is 1 minute for Category A and B aircraft
and 1.25 min for Category C, D, and E, so Flight Simulator’s choice is excessive.

• Two minute legs in the Holding Pattern

• Variable length outbound Initial Approach leg segment. This leg must be
shortened as speed increases in order complete the PT within the 15 NM
maneuvering limit from the PT Fix (HOVER intersection). Flight Simulator comes
close, but does not quite accomplish this. Distances of 17.0, 17.5 and 18.3 NM
for LayerApproachAircraftSpeed 100, 150 and 200 knots are rendered. The
exaggerated duration of the 45° straight segment has a lot to do with this.

• The default LayerApproachAircraftSpeed is 1.3 times Flaps_Up_Stall_Speed
found in the aircraft.cfg file. 1.3 times Full_Flaps_Stall_Speed would have been

a more logical choice because reference approach speed is defined as 1.3 Vso.

200 kts 150 kts 100 kts

2
minutes

11.3
NMiles

12.0
NMiles

12.7
NMiles

KICT ILS19R Approach, ICT Transition

LayerApproachAircraftSpeed – Flight Simulator Assumptions

2
min

2
min

2
min

HOVER
IAF
FAF

HOVER
IAF
FAF

HOVER
IAF
FAF

2
minutes

2
minutes

Procedure
Turn

Holding
Pattern

In
iti

al
 A

pp
ro

ac
h

>

15 NM
15 NM

15 NM
15 NM

15 NM
15 NM

85

� LayerApproachLineActiveColor (BGR hexadecimal)

LayerApproachLineActiveColor is the color applied to the LayerApproachLeg segment.
The default LayerApproachLineActiveColor is a dark magenta shade:

Blue: 107 Green: 27 Red: 137 BGR Hex: 0x6B1B89

An example of LayerApproachLeg and LayerApproachLineActiveColor:

� LayerApproachLineColor (BGR hexadecimal)

Use of LayerApproachLineColor appears to crash the approach map in both FS9 and FSX.
This variable should not be used.

The default, and uneditable approach line color is a very pale gray:

Blue: 247 Green: 247 Red: 247 BGR Hex: 0xF7F7F7

� LayerApproachLineWidth (enum)

Screen pixel line width of the approach and missed approach segments. The default is 1
pixel.

XML for this map:

<DetailLayerApproach>
 0x3
</DetailLayerApproach>

<LayerApproachLeg>
 8
</LayerApproachLeg>

<LayerApproachLineActiveColor>
 0x7010B0
</LayerApproachLineActiveColor>

86

Other LayerApproach Observations

To replicate the approach select function of the GPS 500 gauge, the Approach layer
should be set up as a separate CustomDraw element apart from the main map. All
variables needed to render a map such as BackgroundColor, Zoom, Latitude and
Longitude as well as other desired layers like VORs and NDBs need to be included in this
element.

There are a few unique considerations for the Approach map:

• BackgroundColor must be dark. Other than LayerApproachLineActiveColor,
LayerApproach renders approach segments in a near-white color only (RGB 247,
247, 247; 0xF7F7F7). Although LayerApproachLineColor seems to be the logical
color choice for the rest of the segments, its use crashes the map. (Note: Colors
of the approach maps in this section were edited to eliminate dark print images)

• Latitude and Longitude should be set appropriate for the approach rather than
the usual aircraft lat/lon. The stock gps_500.xml provides a good example,
WaypointAirportApproachTransitionLatitude and Longitude.

• LayerRangeRings should not be used because range rings are always centered
around the user aircraft position (A:PLANE LATITUDE, radians) and (A:PLANE
LONGITUDE, radians), not ApproachTransitionLatitude and Longitude.

• TrackUp should be set to 0, that is, to True North.

87

LayerVehicles
FSX Only

LayerVehicles draws User, AI and Multiplayer on-ground and airborne aircraft traffic
targets. Its primary function is to replicate an Air Traffic Control radar screen for use
with the Flight Simulator Tower feature available in FSX Deluxe.

In LayerVehicles, ‘vehicles’ means aircraft, not ground vehicles like trucks or leisure
boats, although it may be possible that LayerVehicles can draw commercial boat (Ships
and Ferries) targets; the SDK indicates that Traffic Tools can view and customize AI
(“artificial intelligence” or computer-controlled) aircraft and Ships and Ferries boat traffic.
But, I have no knowledge about a connection between Traffic Tools and LayerVehicles
nor have I seen a Ship or Ferry boat target ever painted by LayerVehicles.

A review of LayerVehicles itself is reasonably simple and straightforward. The related
ITrafficInfo group, on the other hand, is of greater interest and provides much more
insight into what can be done with traffic information.

� LayerVehicles (bool)

Layervehicles controls display of the layer. Any number other than 0 will display the
layer. A zero results in no rendering.

Example XML:

<LayerVehicles> 1 </LayerVehicles>

� DetailLayerVehicles (enum)

DetailLayerVehicles determines the style of aircraft symbol displayed.

1 = ATC Symbol. Color can be changed

2 = TCAS Symbol. No color choice with this
symbol. Always a white diamond with black fill

3 = Realistic Symbol. But not too realistic
looking. Color can be changed

-1 = Default. No symbol is drawn

0 = Draw Nothing. No symbol is drawn

88

The figures below demonstrate DetailLayerVehicles styles when displayed on the map.

A few observations:

• Figure A. DetailLayerVehicles = 1. A good choice as it produces the cleanest
looking display. Although the Selected aircraft symbol in the lower left corner is
colored olive green (ColorLayerVehiclesSelected), the label color of the Selected
aircraft is always red. Size of the aircraft symbol cannot be changed.

DetailLayerVehicles = 1 includes a History Trail as shown below. Every few
seconds, the aircraft leaves ‘breadcrumbs’ showing where it has been.

History Trail is part of DetailLayerVehicles = 1 and cannot be turned off.

• Figure B. DetailLayerVehicles = 2. Always a white diamond with black fill. This
symbol appears best on a dark background. No History Trail, but Track Line can
be displayed for this symbol. Size of the aircraft symbol cannot be changed.

• Figure C. DetailLayerVehicles = 3. Can produce a congested looking display.
The color of the Selected aircraft remains the same color as the rest of the
aircraft. No History Trail. Size of the aircraft symbol cannot be changed.

If DetailLayerVehicles is not included in the XML code, no aircraft symbol will be drawn.

History Trail History Trail

DetailLayerVehicles = 1 DetailLayerVehicles = 2 DetailLayerVehicles = 3

A B C

89

� TextDetailLayerVehicles (enum)

TextDetailLayerVehicles controls the format of aircraft flight status information displayed
in the text label for each aircraft.

1 = Realistic. Five items of information are
displayed on two lines of text that alternate back
and forth about every two seconds.

2 = Detailed. Five items of information are
displayed on five lines.

-1 = Default. No text label is drawn

0 = Draw Nothing. No text label is drawn

Draw nothing

Draw nothing

The flight status information consists of:

1. Aircraft Call Sign. In this example, N2678Q

2. Aircraft Model. For example, LJ45

3. Destination Airport. This is the Ident of the destination waypoint of the AI or
Multiplayer aircraft. In this example, PAWG, Wrangell Airport, Wrangell Alaska.

4. Altitude. In Realistic Format, it is Altitude (MSL) in 100s of feet. In this
example, 319 = 31,900 feet. Output is in US - Imperial units (feet, knots) even
if simulation settings are metric. In real life, this is the Mode C standard
pressure altitude reported in hundreds of feet by the aircraft transponder.

5. True Airspeed. In Realistic Format, True Airspeed is represented in 10s of
knots. In this example, 44 = 440 knots. Output is in US - Imperial units even if
the sim settings are metric. In real life, this is Groundspeed of course. Why
does FS use True Airspeed when ITrafficInfo can access A:GROUND VELOCITY?

If TextDetailLayerVehicles is not included in the XML code, no text label will be drawn.

� ObjectDetailLayerVehicles (decimal or hexadecimal)

ObjectDetailLayerVehicles controls what is drawn. Usually, this is “Airborne’ and ‘Ground’
vehicles (aircraft on the ground), and the bit selection is:

90

8 4 2 1 - Decimal equivalent

R
A
C
IN

G

V
E
H

IC
LE

S

A
IR

B
O

R
N

E

V
E
H

IC
LE

S

G
R
O

U
N

D

V
E
H

IC
LE

S

T
R
A
C
K
 L

IN
E

3 2 1 0 - Bit number (Bit 0 thru Bit 3)

0 1 1 0 - ObjectDetailLayervehicles selections

The resulting binary number is 0 1 1 0 whose decimal equivalent is 6 and hexadecimal
equivalent is also 6. The appropriate XML is either:

<ObjectLayerDetailVehicles> 6 </ObjectLayerDetailVe hicles>

or

<ObjectLayerDetailVehicles> 0x6 </ObjectLayerDetail Vehicles>

• Racing Vehicles: Presumed that aircraft involved in a Race Mission are drawn.

• Airborne Vehicles: All Airborne AI or Multiplayer aircraft within the map
boundaries are drawn.

• Ground Vehicles: All Awake Ground AI or Multiplayer aircraft within the map
boundaries are drawn.

• Track Line: Displays a short track line indicating current A:PLANE HEADING
DEGREES MAGNETIC for each AI or Multiplayer airborne aircraft. This is
available only with DetailLayerVehicles = 2, TCAS. The track line is always white
like the TCAS symbol border, consequently, a non-white background is necessary
in order to see Track Line. Length of the Track Line is proportional to True
Airspeed and it points in direction the aircraft is heading to unlike History Trails
that show where the aircraft has come from.

ObjectDetailLayerVehicles = 4

1 = Airborne Vehicles

0 = Ground Vehicles

0 = Track Line

ObjectDetailLayerVehicles = 5

1 = Airborne Vehicles

0 = Ground Vehicles

1 = Track Line

ObjectDetailLayerVehicles = 7

1 = Airborne Vehicles

1 = Ground Vehicles

1 = Track Line

TRACK LINE TRACK LINE

91

� ColorLayerVehicles (BGR hexadecimal)

ColorLayerVehicles controls color of the “ATC” and “Realistic” aircraft symbol
(DetailLayerVehicles 1 and 3). Its format is hexadecimal Red-Green-Blue.

In the event that ColorLayerVehicles is not included the XML script, the default color is
yellow:

Blue: 0 Green: 247 Red: 247 BGR Hex: 0x00F7F7

� ColorLayerVehiclesSelected (BGR hexadecimal)

ColorLayerVehiclesSelected controls color of the Selected vehicle. This applies only to
the “ATC” aircraft symbol (DetailLayerVehicles 1). The “TCAS” and “Realistic” symbols
do not change color if Selected. Its format is hexadecimal Red-Green-Blue.

In the event that ColorLayerVehiclesSelected is not included the XML script, the default
color is yellow:

Blue: 0 Green: 247 Red: 247 BGR Hex: 0x00F7F7

� TextColorLayerVehicles (BGR hexadecimal)

TextColorLayerVehicles controls the color of the text label for all three aircraft symbol
types. Applies to non-Selected aircraft only. Its format is hexadecimal Red-Green-Blue.

In the event that TextColorLayerVehicles is not included the XML script, the default color
is magenta:

Blue: 255 Green: 0 Red: 255 BGR Hex: 0xFF00FF

The text color of the Selected aircraft label is always red, regardless of the color of the
Selected aircraft symbol itself.

92

ITrafficInfo: Nearest Traffic Group
FSX Only

ITrafficInfo is a Nearest search group analogous to other fs9gps Nearest groups such as
NearestAirport. It returns AI or multiplayer aircraft traffic nearest the search origin that
is normally defined as the user’s aircraft or control tower position. It sorts data by
ascending distance. Like all Nearest searches, ITrafficInfo returns an indexed list and a
current line number (or pointer, index) must be supplied to obtain data about a specific
aircraft. An ITrafficInfo search can return User’s aircraft, multiplayer aircraft, AI aircraft,
and AI ground vehicles such as airport trucks, ships and boats.

The ITrafficInfo variables retrieve flight and communication data of individual AI or
multiplayer aircraft (i.e., ‘Vehicles’). As referenced in the SDK, by using XML instructions
a large number of Simulation Variables (A:Vars) can be retrieved each update cycle for
every aircraft. The table below is a non-exhaustive sample.

� ENGINE DATA

NUMBER OF ENGINES
ENGINE TYPE
PROP1 RPM
TURB ENG1 N1

� POSITION AND SPEED DATA

GROUND VELOCITY
PLANE ALT ABOVE GROUND
PLANE LATITUDE
PLANE LONGITUDE
PLANE ALTITUDE
PLANE PITCH DEGREES
PLANE BANK DEGREES
PLANE HEADING DEGREES TRUE
PLANE HEADING DEGREES MAGNETIC

� FLIGHT INSTRUMENTATION DATA

AIRSPEED TRUE
VERTICAL SPEED
ATTITUDE INDICATOR PITCH DEGREES
ATTITUDE INDICATOR BANK DEGREES

� AVIONICS DATA

COM1 TRANSMIT
COM1 ACTIVE FREQUENCY
COM1 STANDBY FREQUENCY

NAV1 ACTIVE FREQUENCY
NAV1 AVAILABLE
ADF1 ACTIVE FREQUENCY
TRANSPONDER1 CODE

� CONTROLS DATA
RUDDER POSITION
ELEVATOR POSITION
AILERON POSITION
IS GEAR RETRACTABLE
AILERON LEFT DEFLECTION
AILERON RIGHT DEFLECTION

� MISCELLANEOUS SYSTEMS DATA
ELECTRICAL MASTER BATTERY
CIRCUIT AVIONICS ON

� MISCELLANEOUS DATA
DESIGN SPEED VS0
EMPTY WEIGHT
SIM ON GROUND

� STRING DATA
ATC TYPE
ATC MODEL
ATC ID
ATC AIRLINE
ATC FLIGHT NUMBER

Some variables, however, such as Fuel data (stock AI aircraft never run out of fuel or
experience emergencies), the A:GPS variables, and Autopilot data are not retrievable
from ITrafficInfo. Experiment to see which variables are retrievable.

93

� ITrafficInfo:Latitude

� ITrafficInfo:Longitude (degrees or radians) [Get, Set]

Latitude and Longitude of the reference point, usually the aircraft or control tower.
Default is A:PLANE LATITUDE and LONGITUDE.

� ITrafficInfo:MaxVehicles (enum) [Get, Set]

The limit of the number of aircraft returned by the search. The larger the number, the
longer it takes for the ITrafficInfo search to complete. It’s good practice to keep
ITrafficInfo:MaxVehicles to an appropriate size for the application. As an example, in a
TCAS gauge, a maximum of 30 is a proper choice for ITrafficInfo:MaxVehicles. Default
is 200 vehicles. Maximum is approximately 250 to 260. Any value set larger than this
will likely crash the simulation – a memory issue, I think.

� ITrafficInfo:Radius (meters, NMiles) [Get, Set]

Maximum search radius. AI aircraft beyond ITrafficInfo:Radius will still be displayed by
LayerVehicles on the map, but only those aircraft returned in the ITrafficInfo nearest
traffic search will have accessible information. Default is 43 NMiles. AI aircraft are
generated up to a maximum distance of 100 NM, so when working with AI traffic, there
is no need to set Radius larger than 100 NM.

� ITrafficInfo:Filter (enum or hexadecimal) [Get, Set]

ITrafficInfo:Filter filters the Nearest Traffic search to include or exclude certain types
and categories of aircraft or vehicles according to seven filter criteria:

• AWAKE. Bit #6. Awake are active ground or airborne aircraft. Setting this filter
will include Awake aircraft in the search results. Only ‘Awake’ aircraft can be
displayed on the map (i.e., radar screen). Awake and active does not necessarily
mean that the aircraft is moving. It can be holding short, for example. Filters AI
but not Multiplayer searches.

• SLEEPING. Bit #5. ‘Sleeping’ are ground AI aircraft that have been generated
(i.e., spawned) by Flight Simulator but are not yet an active participant in the
simulation. They have an aircraft Call Sign consisting of ATC Airline and Flight
Number or ATC ID (e.g., SOA7192), Model (e.g., A321), a two waypoint Flight
Plan (Departure and Destination airport) and a unique VehicleID. Variables
associated with sleeping aircraft can be listed, but the aircraft symbol will not
display on the map until it is awakened by Flight Simulator. Sleeping aircraft are
initially positioned at airport gates and parking ramps as demonstrated in the
figures that follow.

Note that this filter adds ‘Sleeping’ ground aircraft. The list of aircraft returned
always includes ‘Awake’ aircraft. Filters AI but not Multiplayer searches.

94

• IN_AIR. Bit #4. Airborne aircraft are included in the search results. By
definition, these will also be Awake aircraft. The search condition is the same as
(A:SIM ON GROUND, bool) = 0. This filter operates in AI as well as Multiplayer
traffic searches.

• ON_GROUND. Bit #3. Ground aircraft/vehicles will be included in the search.
The search condition is the same as (A:SIM ON GROUND, bool) = 1. This filter
operates in AI as well as Multiplayer traffic searches.

Either IN_AIR or ON_GROUND (Bit #4 or Bit #3), or both, must always be selected in
order for the Nearest Traffic search to function.

• TOWER_CONTROLLERS. Bit #2. I am not sure of the function of this bit. In my
experience, it appears to have no effect in either single player free flight mode or
multiplayer mode, so its function remains a mystery to me. If anyone knows
what this does, please shoot me an email.

• GROUND_VEHICLES. Bit #1. This Bit enables AI ground vehicles other than
aircraft to be included in the Nearest Traffic search. These include airport
vehicles (fire trucks, bag tractors, etc.), road vehicles, ships and ferries and
leisure boats. They can be either stationary or moving.

Ground aircraft are included in the traffic search whenever Bit #3 ON_GROUND
is selected, regardless of whether this Bit #1, GROUND_VEHICLES, is selected or
not. As a consequence, it is not possible to isolate non-aircraft ground vehicles
like trucks or boats by selecting Bits 3 and 1. ON_GROUND, Bit #3, must also be
enabled whenever Bit #1 is selected.

Note of interest: In multiplayer mode, the Air Traffic Controller (SimObjects\
Misc\ControlTower) is returned in the traffic search when Bit #4 IN_AIR and Bit
#1 GROUND_VEHICLE are both selected. As far as Flight Simulator is
concerned, the Tower is both on the ground and in the air (control tower is
elevated above the airport surface) and the height of the control tower can be
displayed using (C:ITrafficInfo:C:PLANE ALT ABOVE GROUND, feet). This is also
one way to see the lat/lon coordinates of the control tower.

• AIRCRAFT. Bit #0. I cannot determine the function of this variable. Aircraft are
always included in a Nearest Traffic search if this bit is 1 or 0.

If ITrafficInfo:Filter is not included in the xml script, the default is decimal 89, equivalent
to binary 1 0 1 1 0 0 1 (‘Awake’, ‘In_Air’, ‘On_Ground’, ‘Aircraft’).

ITrafficInfo:Filter can be changed by user input at any time during the sim to alter the
Nearest Traffic results “on the fly”.

Lastly, note that AI traffic is not possible in Multiplayer mode.

95

Designating the Filter Value

As an example, if Airborne traffic is to be included in the nearest search, an appropriate
selection is bit #6 and bit #4, ‘Awake’ and ‘In_Air’ as follows:

64 32 16 8 4 2 1 - Decimal equivalent
A
W

A
K
E

S
LE

E
P
IN

G

IN
_
A
IR

O
N

_
G

R
O

U
N

D

T
O

W
E
R

C
O

N
T
R
O

LL
E
R
S

G
R
O

U
N

D

V
E
H

IC
LE

S

A
IR

C
R
A
F
T

6 5 4 3 2 1 0 - Bit number (Bit 0 thru Bit 6)

1 0 1 0 0 0 0 - ITrafficInfo:Filter selections

The resulting binary number is 1 0 1 0 0 0 0. Its decimal equivalent is 80 and
hexadecimal equivalent is 50. The appropriate XML is therefore either:

80 (>C:ITrafficInfo:Filter) or

0x50 (>C:ITrafficInfo:Filter)

Sleep State

Sleep state has no influence on ‘In_Air’ aircraft; airborne vehicles are all ‘Awake’ by
definition. Consequently, all of the following yield the same search results:

64 32 16 8 4 2 1 - Decimal equivalent

A
W

A
K
E

S
LE

E
P
IN

G

IN
_
A
IR

O
N

_
G

R
O

U
N

D

T
O

W
E
R

C
O

N
T
R
O

LL
E
R
S

G
R
O

U
N

D

V
E
H

IC
LE

S

A
IR

C
R
A
F
T

6 5 4 3 2 1 0 - Bit number (Bit 0 thru Bit 6)

0 0 1 0 0 0 0 - ITrafficInfo:Filter selections

0 1 1 0 0 0 0 - ITrafficInfo:Filter selections

1 0 1 0 0 0 0 - ITrafficInfo:Filter selections

1 1 1 0 0 0 0 - ITrafficInfo:Filter selections

96

Sleep state does affect the search of Ground aircraft, however. If all ‘Awake’ ‘Ground’
aircraft are to be included in the search, the selection would be:

64 32 16 8 4 2 1 - Decimal equivalent

A
W

A
K
E

S
LE

E
P
IN

G

IN
_
A
IR

O
N

_
G

R
O

U
N

D

T
O

W
E
R

C
O

N
T
R
O

LL
E
R
S

G
R
O

U
N

D

V
E
H

IC
LE

S

A
IR

C
R
A
F
T

6 5 4 3 2 1 0 - Bit number (Bit 0 thru Bit 6)

1 0 0 1 0 0 0 - ITrafficInfo:Filter selections

Example XML:

72 (>C:ITrafficInfo:Filter) or

0x48 (>C:ITrafficInfo:Filter)

Selecting ‘Sleep’ adds sleeping Ground aircraft to the search results. ‘Awake’ is the
default sleep state and is always included for both ‘In_Air’ and ‘Ground’ searches. There
is no way to isolate just ‘Sleeping’ ‘On_Ground’ aircraft. Both of the following yield the
same search results, namely, ‘Awake’ plus ‘Sleeping’ ‘On_Ground’ aircraft:

64 32 16 8 4 2 1 - Decimal equivalent

A
W

A
K
E

S
LE

E
P
IN

G

IN
_
A
IR

O
N

_
G

R
O

U
N

D

T
O

W
E
R

C
O

N
T
R
O

LL
E
R
S

G
R
O

U
N

D

V
E
H

IC
LE

S

A
IR

C
R
A
F
T

6 5 4 3 2 1 0 - Bit number (Bit 0 thru Bit 6)

1 0 0 1 0 0 0 - ITrafficInfo:Filter selections

Nearest Traffic Search Example

Next is an example of a Nearest Traffic search result for AI aircraft at San Francisco
International Airport. It shows some of the types of data that can be retrieved for every
aircraft during each gauge update cycle. The search radius was two NMiles so aircraft
at nearby airports were not included. In this particular case, the search center is my
user aircraft, N3968G, Vehicle ID #1, a Cessna 421 parked at the center of the airport
facility. Alternatively, a Control Tower can be established as search center (the typical
multiplayer setup for a Traffic Controller).

97

Cur Idx (Current Index), Dist (Distance), VID (Vehicle ID), and Flight Plan are SDK
“documented” ITrafficInfo variables and are discussed later. As well, the simple XML
required to retrieve other variables such as Latitude, Longitude, Altitude, etc is also
addressed later.

Ground Vehicle ID 664 is a little noteworthy. It’s an MD80 from Las Vegas McCarran
that just landed Rwy 28R and is already on taxiway Papa, less than 2700’ from the touch
down zone. AI aircraft land hard and stop quickly in Flight Simulator.

98

99

100

� ITrafficInfo:SortOrder

This variable is not implemented according to the SDK. Having said that, however,
ITrafficInfo is a Nearest search and traffic returned by the search are ordered in
ascending distance from the search origin (ITrafficInfo:Latitude and Longitude).

� ITrafficInfo:CurrentVehicle (enum) [Get, Set]

ITrafficInfo:CurrentVehicle is the index pointer for the nearest traffic search list. The
first aircraft in the list is ITrafficInfo:CurrentVehicle 0. Example XML:

0 (>C:ITrafficInfo:CurrentVehicle)

� ITrafficInfo:SelectedVehicle (enum) [Get, Set]

ITrafficInfo:SelectedVehicle is an index pointer used to select a specific aircraft from the
ITrafficInfo list in order to highlight its movement in contrast to all other aircraft on the
radar screen. The aircraft must be included in the ITrafficInfo search results in order to
be selected/highlighted. Only one aircraft can be Selected at a time.

101

Figure A above is a traffic radar image around London Heathrow Airport. The Range is
80 NM. A nearest traffic search was enabled with a Filter value of 80 (‘Awake’ and
‘In_Air’), a search radius of 40 NM, and maximum vehicle limit of 50. Additionally,
LayerRangeRings, LayerTerrain and TerrrainShadow were enabled.

Figure B is a list of the 20 aircraft returned in the nearest Traffic search. If
CurrentVehicle Index 6 is subsequently chosen, then the ‘Selected’ aircraft, SOA7192,
can be highlighted in a different color as shown in Figure C. Until a new selection is
made, SOA7192 will remain highlighted as its flight continues.

Figure D demonstrates that the radar screen will display all AI or multiplayer aircraft
within the map boundary. Which aircraft are displayed on the map is controlled by
ObjectDetailLayerVehicles (airborne and/or ground), not by ITrafficInfo:Filter. However,
only the 20 aircraft returned from the nearest traffic search, that is, the aircraft that are
within the 40 NM search radius, can be Selected or interrogated for various real-time
data as shown in Table B.

Incidentally, a count of aircraft displayed on the map within the 40 NM search radius
apparently results in 19, but the ITrafficInfo list contains 20. Note that Current Index 14
and 15 is essentially a duplicate aircraft. A common AI gen bug.

� ITrafficInfo:SelectedVehicleID (enum) [Get]

ITrafficInfo:SelectedVehicleID is a unique identification number automatically assigned
by the traffic module to AI or multiplayer aircraft in order to enable selection/highlight of
specific aircraft. The CurrentVehicle index pointer is not suitable for this purpose
because it represents relative distances from the search origin at the point in time the
search was made. As aircraft move around, the relative distance order constantly
changes and the CurrentVehicle index of a particular aircraft may be 2 now, but could
be a different number the next update cycle. On the other hand, SelectedVehicleID
remains with the aircraft regardless of relative distance position until it is retired from
the simulation by the traffic module.

Example XML script at the end of this section demonstrates the vehicle selection process.

� ITrafficInfo:ListSize (enum) [Get]

ITrafficInfo:ListSize is the number of aircraft returned by the nearest aircraft search. It
is analogous to the Items number from other Nearest searches, for example,
NearestAirportItemsNumber.

102

� ITrafficInfo:CurrentDistance (NMiles or km) [Get]

ITrafficInfo:CurrentDistance is the slant distance of each aircraft retrieved in the nearest
traffic search from the search origin. Note that this is slant distance, not horizontal
distance like GeoCalcDistance. ITrafficInfo:CurrentDistance incorporates the relative
altitude difference between the search origin which is usually the user’s aircraft, and the
traffic aircraft.

A Note on Update Frequency

ITrafficInfo:CurrentDistance is updated every 2 seconds only by Flight Simulator.

However, other AI or multiplayer system variables are updated every gauge update
cycle. For example:

• C:ITrafficInfo:C:PLANE LATITUDE

• C:ITrafficInfo:C:PLANE LONGITUDE

• C:ITrafficInfo:C:PLANE ALTITUDE

• C:ITrafficInfo:S:PLANE LATITUDE

• C:ITrafficInfo:S:PLANE LONGITUDE

• C:ITrafficInfo:S:PLANE ALTITUDE

• C:ITrafficInfo:C:AILERON LEFT DEFLECTION

• C:ITrafficInfo:C:PLANE ALT ABOVE GROUND, etc.

are all updated every gauge update cycle.

� ITrafficInfo:SelectedFlightPlan (String) [Get]

ITrafficInfo:SelectedFlightPlan is a list of Waypoint Idents of the flight plan for the
selected aircraft. For AI aircraft, it consists only of the departure airport Ident (not
ICAO as stated in the SDK) and the destination airport Ident. The SDK states that flight
plans longer than two waypoints will be listed in comma separated format, however it
appears that ITrafficInfo:SelectedFlightPlan will return the Idents of first two waypoints
only of any flight plan.

In Multiplayer mode, ITrafficInfo:SelectedFlightPlan returns the Flight Plan string for the
User’s aircraft only, provided a Flight Plan is loaded. It will not return the Flight Plan for
other players. Consequently, the ATC Controller function in Multiplayer will not

103

ITrafficInfo XML Script Examples

Example 1. Displaying a List of AI Aircraft Information

The first example demonstrates the set-up of the Nearest Traffic search and an example
of an Element display for the list of aircraft retrieved in that search:

1 <Macro Name="CurrentCallsign">

2 (C:ITrafficInfo:C:ATC AIRLINE, string) d slen 0 > ;

3 if{ 0 3 ssub uc (C:ITrafficInfo:C:ATC FLIGHT NUMBER , string) scat }

4 els{ (C:ITrafficInfo:C:ATC ID) d slen 0 == if{ (C:I TrafficInfo:CurrentPlayerName) } }

5 </Macro>

6
7 <Update>

8 (A:PLANE LATITUDE, radians) (>C:ITrafficInfo:Latitu de, radians)

9 (A:PLANE LONGITUDE, radians) (>C:ITrafficInfo:Longi tude, radians)

10 30 (>C:ItrafficInfo:MaxVehicles)

11 40 (>C:ItrafficInfo:Radius, nmiles)

12 0x50 (>C:ItrafficInfo:Filter) <!-- AWAKE and IN AI R -->

13 </Update>

14
15 <Element Name="ITrafficInfo Nearest Traffic Search Display">

16 <Position X="10" Y="10"/>

17 <FormattedText X="500" Y="600" Font="courier new" F ontSize="9" LineSpacing="9" Color="Blue"

18 BackgroundColor="white" Bright="Yes" Align="Right">

19 <Color Value="#111111"/>

20 <String>

21 \{clr2}

22 %CUR ON MAG GND\n

23 %IDX CALL MODEL DIST VID LATITUDE LON GITUDE ALT VSI GND HDG SPD FLIGHT PLAN\n

24 \{clr}

25 %((C:ItrafficInfo:ListSize) s2 0 !=)

26 %{if}

27 %(0 sp1)

28 %{loop}

29 %(l1 (>C:ITrafficInfo:CurrentVehicle))

30 %((C:ITrafficInfo:CurrentVehicle) (>C:ITrafficInfo: SelectedVehicle))

31 %((C:ITrafficInfo:CurrentVehicle))%!-5d!

32 %(@CurrentCallsign)%!-10s!

33 %((C:ITrafficInfo:C:ATC MODEL, string))%!-8s!

34 %((C:ITrafficInfo:CurrentDistance, nmiles))%!4.1f!

35 %((C:ITrafficInfo:SelectedVehicleID))%!6d!

36 %((C:ITrafficInfo:C:PLANE LATITUDE, degrees))%!11.6 f!

37 %((C:ITrafficInfo:C:PLANE LONGITUDE, degrees))%!12. 6f!

38 %((C:ITrafficInfo:C:PLANE ALTITUDE, feet))%!7d!

39 %((C:ITrafficInfo:C:VERTICAL SPEED, feet per minute))%!7d!

40 %((C:ITrafficInfo:C:SIM ON GROUND, bool))%!4d!

41 %((C:ITrafficInfo:C:PLANE HEADING DEGREES MAGNETIC, degrees))%!5d!

42 %((C:ITrafficInfo:C:GROUND VELOCITY, knots))%!5d!

43 %((C:ITrafficInfo:SelectedFlightPlan))%!12s!\n

44 %(l1 ++ s1 l2 <)

45 %{next}

46 %{end}

47 </String>

48 </FormattedText>

49 </Element>

• Lines 1 – 5: A macro that generates the aircraft Call Sign from the AI ATC
Airline Name plus Flight Number or CurrentPlayerName in the case of a
multiplayer aircraft. The SDK explanation of ssub is incorrect. Corrected
documentation for the ssub operator can be found in the FSDeveloper Wiki:

104

http://www.fsdeveloper.com/wiki/index.php?title=XML:_Displaying_only_part_of_a_string

• Lines 8 - 12: This is the standard Nearest Search setup – 1) search origin, 2)
maximum items, 3) search radius, and 4) search filter. As soon as these
statements are executed, the default ITrafficInfo search setup will be re-set to
the new values in lines 8 through 12. Default ITrafficInfo setup values are
applied whenever the user does not include them (Latitude and Longitide =
A:PLANE LATITUDE and LONGITUDE, Max Vehicles = 200, search radius = 43
NM, Filter = decimal 89).

In the example above, the setup instructions are executed every update cycle,
however they need to be executed one time only in order to re-set existing setup
values. Consequently, a better place for these lines of code might be within a
Click section of a mouse area, or if left in the update section, limited to one
execution cycle only by use of a conditional if{ } statement.

• Line 18: Note the use of BackgroundColor in the text format. This will nicely
mitigate the objectionable anti-aliasing applied to text in FSX.

• Line 25: This statement will prevent the display of the list until the nearest
traffic search is complete, as evidenced by ListSize being greater than zero. This
is a standard approach for fs9gps nearest searches.

• Line 27: The value zero is stored into Register #1. “0” is always the value of
the first index line.

• Line 28: The display loop begins. Variables for an individual traffic aircraft are
displayed one aircraft at a time, one line at a time based on the current Index
pointer, the value in Register #1.

• Line 29: Register #1 is loaded into the CurrentVehicle index pointer.

• Line 30: Two of the desired outputs for this particular list are the unique
Vehicle ID and AI Flight Plan for each traffic aircraft. Unfortunately, these two
variables can be retrieved only from the Selected aircraft. The XML to Select an
aircraft involves passing a pointer value (in this case, the CurrentVehicle pointer
value) to the Selected index pointer. The XML is straightforward:

(C:ITrafficInfo:CurrentVehicle) (>C:ITrafficInfo:Se lectedVehicle)

The result is that during each pass through the display loop, Line 30 causes the
Current aircraft to also become the Selected aircraft, enabling retrieval and
display of SelectedVehicleID and SelectedFlightPlan for each aircraft retrieved in
the search.

• Lines 36 – 42: Note the special use syntax. As explained in the SDK, The C:
following ITrafficInfo stands for Current, and values retrieved every update cycle
by these code lines are the respective A:Var Simulation Variable values for the
Current aircraft. Similarly, an S: can be used and the values retrieved will be for
the Selected aircraft (although in this example, Line 30 already made the Current
aircraft and the Selected aircraft one and the same).

105

This is very useful. Among other things, it satisfies the traffic data requirements
to build a TCAS gauge. Plotting intruder aircraft on a TCAS moving map gauge
or as an overlay to fs9gps:Map can be done in XML using map scale methods
covered in the Map Projections chapter.

Two additional notes. First, the SDK states that to set the Current or Selected
aircraft, use a statement such as

>C:ITrafficInfo:CurrentVehicle N

where N is a value between 0 and ListSize -1. However, it appears that the
correct syntax is

N (>C:ITrafficInfo:CurrentVehicle)

Secondly, the SDK advises that for the units, the Simulation Variables are all
treated as number, except for certain string variables. This could be a little
misleading, and the use of standard Flight Simulator units as shown in Lines 36
thru 42 is encouraged. As always, FS will make internal conversions for any of its
standard units.

• Line 44: The “incrementer”. After each line of traffic aircraft information is
retrieved and displayed, Register #1 is incremented by 1 and Register #2 is
checked to see if all of the aircraft have been displayed.

The preceding code generated the following list of 14 AI aircraft retrieved in the search.
It’s a real-time display, with numbers and relative aircraft positions continuously
changing.

In this example, the aircraft that is ‘Selected’ is also constantly changing (Line 30) as the
display loop progresses through the nearest traffic search results. With this code it
impossible to Select a particular aircraft and watch its flight progress on the map, as in
Figure C above. Therefore, this script, specifically, Lines 30, 35, and 43 cannot be used
if you want to be able to select a specific aircraft and follow its flight on the map or
radar screen.

106

Example 2. Displaying the Selected Aircraft on the Map

This example shows code required to highlight and display the Selected aircraft on the
map.

1 <ColorLayerVehiclesSelected> 0x0000FF </ColorLayerV ehiclesSelected>

2 <TagPosition> 5 </TagPosition>

3
4 <!-- EXAMPLE: Users choice of CurrentVehicle Index passed to SelectedVehicle Index -->

5 3 (>C:ITrafficInfo:CurrentVehicle)

6 (C:ITrafficInfo:CurrentVehicle) (>C:ITrafficInfo:Se lectedVehicle)

7
8 3 (>C:ITrafficInfo:SelectedVehicle)

9
10 (C:ITrafficInfo:SelectedVehicleID) (>C:fs9gps:Selec tedVehicle)

• Line 1: If it is to stand out, the ColorLayerVehiclesSelected variable must be set
to a different color than the other vehicle symbols, ColorLayerVehicles. In this
example, the Selected aircraft will be displayed with a red symbol. By default,
the Selected aircraft’s text label will be red.

• Line 2: Additionally, the position (TagPosition) of the Selected aircraft’s label
can be changed to help alleviate label congestion. TagPosition operates only on
the Selected vehicle, not all vehicles, so its an aircraft-by-aircraft process to
reposition all tags. The revised TagPosition remains with the aircraft even when
another is subsequently Selected. The default location (TagPosition 0) is upper
right. In this example, the label, or tag position is set to 5, to the left of the
Selected aircraft symbol.

• Line 4 through 9: The ability to Select an aircraft requires that first, a nearest
traffic search has been completed. The nearest search returns an indexed list of
aircraft traffic, and the Selected aircraft is then chosen from that list. In order to
do that, the desired index pointer of the nearest traffic search list,
CurrentVehicle, needs to be identified by the user and passed to
CurrentVehicleSelected. That thought process is reflected by Lines 5 and 6, but it
is more efficient to simply code Line 9.

• Line 11: The last step. In order for CustomDraw to accept the Selected aircraft
for map display, this instruction must be included. Note also that it is not
necessary to pass the SelectedVehicle index number to SelectedVehicleID:

That is, the following is not necessary:

(C:ITrafficInfo:SelectedVehicle)

(>C:ITrafficInfo:SelectedVehicleID)

107

� ITrafficInfo:CurrentPlayerName (string) [Get, Set]

The MultiPlayer player name.

� ITrafficInfo:SelectedPlayerName (string) [Get, Set]

The selected MultiPlayer aircraft.

108

LayerAirways
FSX Only

LayerAirways draws Low Altitude Victor and High Altitude Jet Airway centerlines.

� LayerAirways (bool)

LayerAirways controls whether or not the layer is displayed. Any number other than 0
will display the layer. A zero results in no rendering.

Example XML:

<LayerAirways> 1 </LayerAirways>

� DetailLayerAirways (enum)

DetailLayerAirways controls the line thickness.

• DetailLayerAirways = -1. Default. A 1 screen pixel wide line is drawn

• DetailLayerAirways = 0. Nothing is drawn

• DetailLayerAirways = 1. Thin Lines. A 1 screen pixel wide line is drawn

• DetailLayerAirways = 2. Thick Lines. A 3 screen pixel wide line is drawn

� TextDetailLayerAirways (bool)

TextDetailLayerAirways controls labeling of the Airway name. Any number other than 0
will display the name. Airway names are often, but not always, placed between enroute
intersections that define airway segments.

VICTOR AIRWAYS
TALLA VOR-DME (TLA)
Glasgow, Scotland UK
Range 12 NM

109

� ObjectDetailLayerAirways (enum)

ObjectDetailLayerAirways determines whether Victor Airways, Jet Airways, or both are
displayed.

• ObjectDetailLayerAirways = -1 or omitted. Default. Both Victor and Jet

• ObjectDetailLayerAirways = 0. Nothing displayed

• ObjectDetailLayerAirways = 1. Victor Airways displayed

• ObjectDetailLayerAirways = 2. Jet Airways displayed

• ObjectDetailLayerAirways = 3. Both Victor and Jet displayed

� ColorLayerAirwaysVictor (BGR hexadecimal)

ColorLayerAirwaysVictor is a BGR Hex number representing the color of Victor Airways.
If ColorLayerAirwaysVictor is omitted, the default color is a light blue shade:

Blue: 214 Green: 181 Red: 140 BGR Hex: 0xD6B58C

� ColorLayerAirwaysJet (BGR hexadecimal)

ColorLayerAirwaysJet is a BGR Hex number representing the color of Victor Airways. If
ColorLayerAirwaysJet is omitted, the default color is a light magenta shade:

Blue: 222 Green: 164 Red: 222 BGR Hex: 0xDEA4DE

� TextColorLayerAirways (BGR hexadecimal)

TextColorLayerAirways is a BGR Hex number representing the color of the name label of
Victor Airways only. It is not applied to Jet Airways. If TextColorLayerAirways is
omitted, the default color is cyan:

Blue: 255 Green: 255 Red: 0 BGR Hex: 0xFFFF00

The default, and only color available for the name label of Jet Airways is a purple shade:

Blue: 148 Green: 90 Red: 148 BGR Hex: 0x945A94

110

TAWS
Terrain Awareness Map in FSX

TAWS = GPWS + FLTA

Terrain Avoidance Warning Systems are a combination of a Ground Proximity Warning
System and Forward Looking Terrain Avoidance. FS9 and FSX provide capability to
model GPWS Modes 1 through 6, but not FLTA – that is, FS has no XML gauge capacity
to measure terrain ahead of the aircraft and issue FLTA alerts as appropriate. The table
below summarizes terrain avoidance modeling capability in Flight Simulator using stock
FS variables and XML. Aural alerts require a third party sound module and sound files:

TAWS SYSTEM REQUIREMENTS
TAWS

Class A

TAWS

Class B Key Flight Simulator Variables

Radar Altimeter Required Not Required Yes FS9 and FSX A:RADIO HEIGHT

Airdata and Computer Required Not Required Yes FS9 and FSX Various system variables (A:Vars)

Gear State Input Required Not Required Yes FS9 and FSX A:GEAR HANDLE POSITION

Flaps State Input Required Required Yes FS9 and FSX A:FLAPS HANDLE PERCENT

Supplemental Type Certification Required Not Required N/A Not Applicable Not Applicable

Terrain Awareness Map Required Not Required Approx FSX only
ElevationXColor variables

and A:PLANE ALTITUDE

Fully Autonomous GPWS Required Not Required Yes FS9 and FSX
A:Vars plus GPS module variables provides

redundancy

GPWS ALERTS GPWS Mode Acronym Key Flight Simulator Variables

Excessive Rate of Descent Mode 1 ERD Yes FS9 and FSX A:PLANE ALTITUDE and A:RADIO HEIGHT

Excessive Terrain Closure Rate Mode 2 ECRT Yes FS9 and FSX A:RADIO HEIGHT

Negative Climb Rate After Takeoff Mode 3 NCAT Yes FS9 and FSX
A:PLANE ALTITUDE, A:RADIO HEIGHT and

A:VERTICAL SPEED

Flight Into Terrain Not In Landing Configuration Mode 4 FITNL Yes FS9 and FSX
A:RADIO HEIGHT, A:GEAR HANDLE POSITION,

and A:FLAPS HANDLE PERCENT

Excessive Deviation Below Glideslope Mode 5 EDGSD Yes FS9 and FSX A:RADIO HEIGHT, A:NAV1 GSI

Excessive Bank Angle Mode 6 EBA Yes FS9 and FSX A:ATTITUDE INDICATOR BANK DEGREES

Altitude Callout Mode 6 VC Yes FS9 and FSX A:RADIO HEIGHT

Windshear Protection Mode 7 WS Doubtful FS9 and FSX
A:AMBIENT WIND X and Z, but vertical wind

speed (AMBIENT WIND Y) not available

FLTA ALERTS Acronym Key Flight Simulator Variables

Forward Looking Terrain Avoidance FLTA No None Beyond the capability of the GPS Module.

Premature Descent Alert PDA Yes FS9 and FSX A:PLANE ALTITUDE and GPS Module variables

Can Be Modeled By

Flight Simulator?

Can Be Modeled By

Flight Simulator?

Can Be Modeled By

Flight Simulator?

111

Given the FLTA limitation, however, a crude Class A TAWS system can be built for FSX
using XML script because CustomDraw Map can be configured to produce a Terrain
Awareness Map facsimile. This chapter focuses on the Terrain Awareness Map.

� Terrain Awareness Map

Using ElevationXColor variables and aircraft altitude, it is possible to create an
approximate TAWS terrain awareness display. It is “approximate” at best because the
coarse 1000 foot ElevationXColor interval combined with significant color feathering
produces an inaccurate terrain awareness map.

Two issues must be addressed for the TAWS terrain awareness display in FSX:

� Elevation color selection that is a function of aircraft height above terrain

� Terrain Refresh needed due to aircraft altitude change

� Elevation Color Selection

The chart below shows Terrain Awareness Map colors used in a few TAWS systems that
can be researched online. Of these, the Garmin 500W Series - G1000 TAWS color
scheme is the simplest and makes the most sense for an FSX implementation that is
only approximate anyway. The fewer colors the better in an FSX TAWS map.

112

The XML approach is to incorporate A:PLANE ALTITUDE conditions into the
ElevationXColor expression. The following is an example of the Elevation4000Color
(3000 ft to 4000 ft elevation layer) expression:

1 <Elevation4000Color>
2 (L:TAWS_Mode, bool) 0 == (A:SIM ON GROUND, bool) o r
3 if{
4 0x6EB5C7 <!-- THE NON-TAWS ELEVATION COLOR -->
5 }
6 els{
7 (A:PLANE ALTITUDE, feet) 5000 >
8 if{
9 0x101010 <!-- BLACK -->
10 }
11 els{
12 (A:PLANE ALTITUDE, feet) 4000 >
13 if{
14 0x00F6FF <!-- YELLOW -->
15 }
16 els{
17 0x0202E3 <!-- __RED__ -->
18 }
19 }
20 }
21 </Elevation4000Color>

• Lines 2 – 7. If the TAWS switch is OFF or the aircraft is on the ground, then
the standard non-TAWS elevation color is used. In this case, it is 0x6EB5C7
which is from the G1000 manual.

• Line 6. TAWS Mode. The TAWS switch is ON and the aircraft is in the air.

• Lines 7 – 10. If the aircraft is at an altitude greater than 5000 feet (line 7),
then the top of the Elevation4000Color layer, which is 4000 feet, is more than
1000 feet below the aircraft, and according to the TAWS color palette the layer
should be colored BLACK (line 9).

• Line 11. If the aircraft altitude is not greater than 5000 feet, then …

• Lines 12 – 15. If the aircraft is at an altitude greater than 4000 feet (line 12),
then the top of the Elevation4000Color layer is between 0 feet and 1000 feet
below the aircraft, and according to the TAWS color palette the layer should be
colored YELLOW (line 14).

• Line 16. If the aircraft altitude is not greater than 4000 feet, then …

• Line 17. The top of the terrain layer (4000 feet) is at or above the aircraft, and
according to the TAWS color palette, the layer should be colored RED.

113

Yellow Band Must be 1000’ (or Multiples of 1000’)

Because of the 1000 foot ElevationXColor interval, the difference between altitudes in
line 7 and 12 must be 1000 feet, or multiples of 1000 feet. If not, then as the aircraft
climbs or descends past each thousand foot altitude level, the yellow band will either
disappear or double its width for a while.

If, for example, line 7 has 5000’ but line 12 has 4200’ instead of 4000’, then the yellow
band will disappear when A:PLANE ALTITUDE is between 4000’ and 4200’. This will
repeat for the other ElevationXColor layers if the line 7, line 12 elevations are expressed
in a similar manner (i.e., not multiples of 1000’ difference).

Color Feathering

TerrainShadow must be disabled in TAWS mode or the TAWS colors will not display in a
satisfactory manner. However, when TerrainShadow = 0, significant color feathering
occurs over a 2000 foot elevation interval, and as well, the central color band is
centered 1000 feet below the value expressed in the ElevationXColor variable name.

The maps below demonstrate the effect on Elevation4000Color.

Figure A is a contour map of the Island of Hawaii, USA. The 2000’, 3000’, and 4000’
topographic contours from the FSX terrain data are displayed (a Photoshop manipulation
from ElevationXColor, not a direct extraction from the terrain database).

In Figure B, Elevation4000Color = 0x37597D (a chocolate brown color) and
TerrainShadow = 1. The elevation color uniformly fills the interval from 4000 feet to
3000 feet as expected. But unfortunately, TAWS colors (black, red, yellow) will not
display satisfactorily when Terrain Shadow is enabled.

Figure C is the same map but with TerrainShadow = 0 as required for TAWS Mode.
This obviously presents a few issues to deal with for a terrain awareness display. The
area outlined by the dashed line is enlarged in Figure D.

114

Figure D shows that the brown color band associated with Elevation4000Color is actually
centered on the 3000’ elevation contour and feathers out in both directions for 1000
vertical feet. Figure E is a cross-sectional view.

For an aircraft flying at 3000’ altitude, the bottom of the yellow band should be at 2000’
elevation, as shown in Figure F. But ElevationXColor variables are available only at
1000’ intervals, so the same color band applies for an aircraft flying at 3999’ altitude –
the TAWS map colors cannot change until the aircraft reaches 4000’ altitude.

115

As a consequence of the coarse 1000’ color interval, a 500 foot altitude compromise
between the two ElevationXColor expressions in Figure F is:

The TAWS map display is therefore only “approximate”. The coarse 1000’ color interval
limits accuracy of the display and the color edges (i.e., black to yellow) are feathered
rather than crisp, but yellow provides such a contrast to black that the bottom of the
yellow color band is still quite apparent.

Radar Altimeter ElevationXColor Adjustment

About half of the time when close to terrain, the altitude compromise ends up being too
liberal and the terrain awareness map shows the aircraft to be in the Black when radio
altitude is less than 1000’. To help mitigate this, I prefer to incorporate the following
radar altimeter condition as a final adjustment of the TAWS display colors:

G (A:PLANE ALTITUDE, feet)

= 3000

Island of
Hawaii,
USA

(A:RADIO HEIGHT, feet)

= 1147

Figure G shows the terrain awareness
map display using corresponding
ElevationXColor expressions for all the
elevation color variables. The aircraft is
flying in a SW direction at 3000’
altitude. Its radar altimeter reads 1147
feet meaning that terrain clearance is in
the Black TAWS color band. 1147 feet
is close to the 1000 foot threshold for
Yellow TAWS color and on the map, the
aircraft is close to the bottom of the
Yellow band. So in this particular
snapshot, the terrain awareness map
seems to be reasonably accurate.

DetailLayerTerrain = -1
TerrainShadow = 0

116

<Elevation4000Color>
 (L:TAWS_Mode, bool) 0 == (A:SIM ON GROUND,bool) or
 if{ 0x6eb5c7 } // NON-TAWS ELEVATION COLOR
 els{ (A:RADIO HEIGHT, feet) 1000 <
 if{
 (A:PLANE ALTITUDE,feet) 4000 >=
 if{ 0x101010 } // BLACK
 els{ (A:PLANE ALTITUDE, feet) 3000 >=
 if{ 0x00f6ff } // YELLOW
 els{ 0x0202e3 } // __RED__
 }
 }
 els{
 (A:PLANE ALTITUDE,feet) 3500 >=
 if{ 0x101010 } // BLACK
 els{ (A:PLANE ALTITUDE, feet) 2500 >=
 if{ 0x00f6ff } // YELLOW
 els{ 0x0202e3 } // __RED__
 }
 }
 }
</Elevation4000Color>

The download XML gauges contain a complete list of ElevationXColor expressions.

� Terrain Refresh

After the terrain layer is rendered, CustomDraw Map will not regularly re-evaluate
ElevationXColor expressions and re-draw the map as aircraft altitude changes would
otherwise dictate. This is true even when UpdateAlways = 1, or “True”. Therefore, in
TAWS mode, the user must force terrain re-fresh.

This TAWS map refresh approach consists of two parts:

• Refreshing the terrain elevation colors

• Timing of the re-fresh

LayerTerrain Refresh

Refreshing the terrain elevation colors requires initiating the computation of a new,
different, terrain display. One way to trigger this is to briefly change DetailLayerTerrain
to 1 (Water Only). The other way, which I recommend, is to momentarily change Zoom.
Refreshing any other layer or even toggling LayerTerrain, will not trigger the re-
evaluation of terrain elevation colors needed for the TAWS display.

117

The new terrain does not need to be fully displayed, just initiated, before re-setting
Zoom. There is an unavoidable but momentary dropout of the map display while this
happens.

Example XML <Mouse> section – turn TAWS Mode On and Off:

1 <Area Name="TAWS MODE" Left="110" Top="430" Width=" 35" Height="13">

2 <Cursor Type="Hand" />

3 <Click Kind="LeftSingle">

4 (L:TAWS_Mode, bool) ! (>L:TAWS_Mode, bool)

5 (L:TAWS_Mode, bool)

6 if{

7 (L:ZFactor, number) (>L:ZFactorOrig, number)

8 (L:Background_Color, enum) (>L:BkgdColorOrig, enum)

9 (L:Terrain_Shadow, bool) (>L:Terrain_ShadowOrig, bo ol)

10 0 (>L:Terrain_Shadow, bool)

11 0 (>L:Update_Always, bool)

12 1 (>L:Map_Priority, bool)

13 1 (>L:Map_Loading, bool)

14 65973 (>L:Background_Color, enum)

15 1 (>L:AC_Cursor_Lime, bool)

16 1 (>L:Terrain_Refresh, bool)

17 0 (>L:TCAS_Mode, bool)

18 }

19 (L:TAWS_Mode, bool) !

20 if{

21 @TAWSClose

22 }

23 0 (>L:TAWS_Counter, enum)

24 </Click>

25 </Area>

• Line 4. TAWS Mode toggle ON and OFF.

• Line 5 - 18. Init sequence when TAWS mode is turned ON

• Line 7 - 9. The original settings of key display variables are stored for reference
when TAWS is turned OFF and the terrain display returns to normal.

• Line 10. TerrainShadow must be 0 for TAWS Mode. Certain colors display
extremely poorly when terrain shadow is enabled, among them, unfortunately,
red and yellow, and black.

• Line 11. UpdateAlways = 0. Actually, this is just a preference, I prefer it to
always be 0 otherwise the map noticeably “dances”.

• Line 12. Priority = 1. Priority = 1 will significantly speed up terrain elevation
color refresh.

• Line 14. BackgroundColor = 65973. This is the decimal equivalent of 0x010101,
Black. When terrain elevation colors refresh, the terrain will usually disappear

118

momentarily and only the BackgroundColor will remain. It is preferable to have
a “flash” of Black than say, BackgroundColor = 16711935 = 0xFF00FF =
Magenta.

• Line 15. The aircraft cursor symbol color is changed to lime. To be seen in
TAWS Mode, the cursor needs to be a color that contrasts with Black, Yellow,
Red and water Blue. Lime or white are good a choices. User preference.

• Line 16. Terrain_Refresh is enabled. Terrain_Refresh is the code that
momentarily changes Zoom which causes FSX to refresh terrain.

• Line 17. In this example gauge, TAWS and TCAS share the same screen, so
TCAS mode is disabled when TAWS map is showing. Not a real-world condition.

• Line 19. Init sequence when TAWS mode is turned OFF. See TAWSClose
macro below

• Line 23. The cycle skip counter required during the terrain refresh step is set to
zero.

TAWSClose macro

1 <Macro Name="TAWSClose">

2 (L:ZFactorOrig, number) (>L:ZFactor, number)

3 (L:Terrain_ShadowOrig, bool) (>L:Terrain_Shadow, bo ol)

4 (L:BkgdColorOrig, enum) (>L:Background_Color, enum)

5 0 (>L:AC_Cursor_Lime, bool)

6 0 (>L:TAWS_Mode, bool)

7 1 (>L:Terrain_Refresh, bool)

8 </Macro>

• Line 2 - 5. Original values of key display settings are returned to pre-TAWS
mode state

• Line 6. TAWS_Mode is turned off

• Line 7. An additional terrain refresh is performed. TAWS_Mode=0, so the
standard terrain palette will be used.

119

Example XML <Update> section – Terrain Refresh:

The following is the terrain elevation color refresh script, placed in the Update section:

1 (L:Terrain_Refresh, bool)

2 if{

3 (L:ZFactor, number) (>L:ZFactorTemp, number)

4 2699 (>L:ZFactor, number)

5 (L:TAWS_Counter, enum) ++ (>L:TAWS_Counter, enum)

6 (L:TAWS_Counter, enum) 3 ==

7 if{

8 (L:ZFactorTemp, number) (>L:ZFactor, number)

9 0 (>L:Terrain_Refresh, bool)

10 0 (>L:TAWS_Counter, enum)

11 }

12 }

• Line 3. The current Zoom factor is stored as L:ZFactorTemp

• Line 4. Zoom factor is set to 2699 NM, the largest allowable Zoom. This will
trigger a re-computation of the ElevationXColor variables which is the goal.

• Line 5 – 6. Cycle Skipping. Terrain color calculation appears to be a multi-
cycle process. Lines 5 and 6 create a delay to allow sufficient time for the
process to sufficiently progress before resetting zoom back to normal (line 8). In
my experience, only a one cycle delay has been required, but experimentation
with line 6 may be needed if the TAWS Mode colors do not appear (i.e., set the
value to 3 or more).

• Line 8. The pre-refresh zoom factor is restored. In a similar manner with line 4,
this triggers a re-computation of the terrain but this time with ElevationXColor
values that are updated by current aircraft altitude.

• Lines 9 - 10. Terrain_Refresh flag is re-set to zero, as is the cycle skip counter.

120

Example XML <Update> section – Timing of the Terrain Refresh:

The refresh timing script, also in the Update section:

1 (L:Alt500, enum) (>L:Alt500_Old, enum)

2 (A:PLANE ALTITUDE, feet) 100 + (A:RADIO HEIGHT, fee t) 1000 <

3 if{ 500 } els{ 1000 } / int (>L:Alt500, enum)

4 (L:Alt500_Old, enum) (L:Alt500, enum) != (L:TAWS_Mo de, bool) and

5 if{

6 1 (>L:Terrain_Refresh, bool)

7 0 (>L:TAWS_Counter, enum)

8 }

• Line 1. The value of L:Alt500 is stored into L:Atl500_Old.

• Line 2 - 3. This creates an aircraft altitude index so that with every 500 foot
change in aircraft altitude, a terrain refresh can be initiated.

o (A:RADIO HEIGHT, feet) 1000 < if{ 500 } els{ 1000 } / int
creates an altitude index at 500’ or 1000’ intervals depending upon radar
altitude. Even though ElevationXColor variables are limited to 1000’
intervals and a 1000’ altitude change index might at first seem sufficient,
a 500’ index is necessary at low radar altitude because my
ElevationXColor variables change elevation color on the 1000 foot mark if
RADIO HEIGHT is less than 1000’ or on the 500 foot mark if it is not (this
is the Radar Altimeter ElevationXColor Adjustment).

o 100 + is used to prevent the index from triggering a refresh right at the
500’ or 1000’ altitude increments, where aircraft typically level off. If this
is omitted, constant minor changes in cruise altitude will force new TAWS
colors. The 100 is added (+) which will create altitude index marks (and
terrain refreshes) at the 400’ and 900’ level so that TAWS colors will be
refreshed just before the aircraft reaches normal cruising altitudes.

• Line 4. If the altitude index has changed and TAWS Mode is enabled, then a
terrain refresh will be triggered.

• Line 6 - 7. The cycle skip counter required during the terrain refresh step is set
to zero and the Terrain Refresh flag is set to 1.

121

Map Scale Calibration for Overlays
XML and CustomDraw

XML overlays and mouse movements are measured in gauge units but CustomDraw Map
renders screen pixels. The scales are not the same. To overlay XML gauge objects at
the correct coordinates relative to the underlying CustomDraw map or to use the mouse
on it, map scale measured in gauge units must be determined first. Both the X-axis and
Y-axis scales (meters per gauge unit X and Y) are needed because they are often
different. XML overlays and mouse use can add useful and very cool functionality to
CustomDraw Map, but calibrating the scales needs to be done accurately.

Scale Calibration: FSX

Scale = Meters / (∆Gauge Units x Zoom Factor)

Calibration can be achieved by clicking the map at locations with known earth
coordinates or distances, recording the mouse X and Y gauge unit position, and
computing the X and Y scale functions that translate between the two.

122

The manual calibration technique in FSX uses Range Rings to establish distance and
involves two mouse clicks on the long axis. The short axis is always calibrated because
Flight Simulator always fills the short axis with 2 x Range.

Calibration should be done at Zoom Factors (Range) less that 269 NM (Zooms less than
500 KM). The calibration sequence involves the following:

• TrackUp = 0
• LayerRangeRings = 1
• ObjectDetailLayerRangeRings = Z Factor (Range)
• Add Polyline Elements through the map center, CenterX and CenterY, as shown

with the blue cursor lines on the map
• Click on the intersections of the range ring and the long axis polyline as shown

above.

Two mouse clicks determine range ring diameter measured in gauge units for the long
axis. The XML map scale is a simple calculation for each axis after that. Additionally,
thse scale functions can be permanently stored as L:Vars so that calibration is no longer
required unless the aspect ratio of the map changes.

The XML map scale functions calculated from the calibration example is shown below.
Note that cosine correction of the X-axis scale at zooms below 500 KM is absent:

123

An example of short axis = X-axis:

Equations for Scale vs. Zoom functions:

A B C D E F

1 Short Axis Long Axis

2 Z Factor (Range): 50.000 Nautical Miles Known Distance: =B2 Nautical Miles

3 Mouse 1: 35.317 Gauge Units

4 Map Size: 300 Gauge Units Mouse 2: 364.036 Gauge Units

5 Map Scale: =(B2*1852)/(B4/2) Meters / Gauge U. Map Scale: =E2*1852*2/ABS(E4-E3) Meters / Gauge U.

6 (Scale) / (Z Factor) =B5/B2 Short Axis - XML Map Scale as a function of Z Factor (1 / 1852 Gauge Unit)

7 (Scale) / (Z Factor) =E5/B2 Long Axis - XML Map Scale as a function of Z Factor (1 / 1852 Gauge Unit)

A functional XML example of this calibration technique is included in the download
section of the BlackBox/CustomDraw website.

124

Scale Calibration: FS9

The idea behind scale calibration in FS9 is the same as for FSX, but range rings are not
available so single point objects from the gps data base (airports, NDBs, or VORs) are
substituted for range rings and GeoCalcDistance is used to establish known distance on
the long axis.

Using airports as an example, the calibration sequence involves the following:

• TrackUp = 0
• DetailLayerAirports = 1. Point symbol
• ICAO or Ident to access WaypointAirportLatitude and Longitude
• Click the airport symbol to determine gauge X, Y coordinates
• GeoCalcDistance variable for distance between the two airports
• Geometric calculations to compute the X and Y components of the distance

Equations for Scale vs. Zoom functions:

125

Zoom Factor: 75 NM Zoom Factor = Range
Map Size X: 500 Gauge Units
Map Size Y: 400 Gauge Units

Mouse 1 X: 67.2727 Gauge Units Calibration Point 1 X
Mouse 1 Y: 302.3506 Gauge Units Calibration Point 1 Y
Mouse 2 X: 410.6840 Gauge Units Calibration Point 2 X
Mouse 2 Y: 120.6660 Gauge Units Calibration Point 2 Y

Delta Mouse X: 343.4113 Gauge Units Point 2 - Point 1 X
Delta Mouse Y: 181.6846 Gauge Units Point 2 - Point 1 Y

GeoCalcLatitude 1: 12.6303 Degrees Calibration Point 1 Lat
GeoCalcLongitude 1: 99.9533 Degrees Calibration Point 1 Lon

GeoCalcLatitude 2: 13.7667 Degrees Calibration Point 2 Lat
GeoCalcLongitude 2: 102.3167 Degrees Calibration Point 2 Lon

GeoCalcDistance: 153.9876 NM
Delta Latitude: 1.1364 Degrees
Delta Latitude: 68.1833 NM Component_Y

Long Axis Distance: 138.0697 NM Component_X
Long Axis Distance: 255705.0 Meters Component_X

Short Axis XML Map Scale: 694.5000 Meters per Gauge Unit

Long Axis XML Map Scale: 744.6029 Meters per Gauge Unit

(Scale) / (Z Factor): 9.2600 Short Axis Scale as function of Z Factor

(Scale) / (Z Factor): 9.9280 Long Axis Scale as function of Z Factor

A B C D

1 Zoom Factor: 75 NM Zoom Factor = Range
2 Map Size X: 500 Gauge Units
3 Map Size Y: 400 Gauge Units
4
5 Mouse 1 X: 67.2727 Gauge Units Calibration Point 1 X
6 Mouse 1 Y: 302.3506 Gauge Units Calibration Point 1 Y
7 Mouse 2 X: 410.6840 Gauge Units Calibration Point 2 X
8 Mouse 2 Y: 120.6660 Gauge Units Calibration Point 2 Y
9 Delta Mouse X: =ABS(B7-B5) Gauge Units Point 2 - Point 1 X

10 Delta Mouse Y: =ABS(B8-B6) Gauge Units Point 2 - Point 1 Y
11

12 GeoCalcLatitude 1: 12.6303 Degrees Calibration Point 1 Lat
13 GeoCalcLongitude 1: 99.9533 Degrees Calibration Point 1 Lon
14 GeoCalcLatitude 2: 13.7667 Degrees Calibration Point 2 Lat
15 GeoCalcLongitude 2: 102.3167 Degrees Calibration Point 2 Lon
16

17 GeoCalcDistance: 153.9876 NM
18 Delta Latitude: =B14-B12 Degrees
19 Delta Latitude: =B18*60 NM Component_Y
20 Long Axis Distance: =SQRT(B17^2-B19^2) NM Component_X
21 Long Axis Distance: =B20*1852 Meters Component_X
22 Short Axis XML Map Scale: =2*B1*1852/B3 Meters per Gauge Unit
23 Long Axis XML Map Scale: =B21/B9 Meters per Gauge Unit
24

25 (Scale) / (Z Factor): =B22/B1 Short Axis Scale as function of Z Factor
26 (Scale) / (Z Factor): =B23/B1 Long Axis Scale as function of Z Factor

126

The XML map scale – Zoom functions calculated from the FS9 calibration example is
shown below:

Manual Calibration Summary Points

Accuracy is improved if two points are clicked for measurement by the mouse rather
than using map CenterX and CenterY as one of the points.

XML examples for all calibration techniques are included in the download section of the
BlackBox/CustomDraw website.

127

Transforming Lat/Lon Coordinates to Gauge Units
And Vice Versa

Making XML overlays for the CustomDraw map involves transforming latitude and
longitude of overlay objects you wish to display into gauge units in order to accurately
position them with respect to the underlying CustomDraw moving map. Using the
mouse to identify coordinates or distances on the map involves the reverse –
transforming XML gauge units into latitude and longitude. Several very cool applications
are possible using these transforms.

The transform process is described by these simple relationships:

 Meters_X = Scale_X x Gauge Units_X x Zoom Factor

 Meters_Y = Scale_Y x Gauge Units_Y x Zoom Factor

where

• Meters: The real earth East-West (“X”) and North-South (“Y”) distance from the
reference point, normally the users aircraft position, to the point of interest

• Scale: The Scale_X and Scale_Y functions derived during map calibration

• Gauge Units: The gauge unit difference (DeltaGU_X and DeltaGU_Y) between
the reference point and the point of interest

• Zoom Factor: The map zoom setting where Zoom = Zoom Factor x 1852

� Transforming Lat/Lon Coordinates to Gauge Units: Creating Map Overlays

This example demonstrates the coordinate transform step for making a TCAS overlay
from traffic coordinates returned by ITrafficInfo variables. The task is to determine the
gauge unit position of the intruder aircraft given its latitude and longitude so it can be
displayed using XML gauge units. When TrackUp = 0 (top of the map is True North), it
is a straightforward two-step process of determining X and Y distance from the lat/lon
pairs and then converting the X,Y distance into gauge units.

Distance calculation is separated into N-S and E-W components using spherical
geometry assumptions shown on the following page. The North-South “Y” distance, or
arc length, is:

Arc Length_Y = (Latitude2 – Latitude1) x Earth Radius where Latitude1 and 2 are
expressed in radians, not degrees. I use Earth Radius = 3440.065 NM or 6371000
meters.

The East-West “X” component has a similar approach but Arc Length_X must be
corrected for latitude:

128

Arc Length_X = (Longitude2 – Longitude1) x (Earth Radius x cos(Lat2)) where
Longitude1 and 2 are expressed in radians.

Lat2

1 Radian: Arc Length = Radius

φ (radians) = Lat2 (radians) – Lat1 (radians)

φ (radians) = Arc Length_Y / Earth Radius

Arc Length_Y = (Lat2 – Lat1) x Earth Radius

Lat1 φ

Earth Radius

3440.065 NM

6,371,000 meters

Determination of distance should also account for the special case where the user
aircraft and intruder aircraft are on opposite sides of the equator and/or prime meridian.

The second step, converting Arc Length_X and Arc Length_Y into gauge units, involves
application of the map scales derived during calibration. The equations

DeltaGU_X = Arc Length_X / (Scale_X x Zoom Factor)

DeltaGU_Y = Arc Length_Y / (Scale_Y x Zoom Factor)

yield gauge units that are measured relative to the users aircraft position, CenterX and
CenterY. Therefore, the final display location, Gauge_X and Gauge_Y, is the sum of the
relative gauge units plus aircraft position, i.e., Gauge_X = DeltaGU_X + CenterX.

Example XML for FSX used for air traffic in a TCAS display:

129

Lines 12 applies a cos(Lat2) correction to compensate for the projection change.

In FS9, the line 9 through 12 equivalent would reduce to 2 lines:

� TrackUp = 1

TrackUp = 1 is the normal map configuration for an aircraft gps or MFD display. In this
mode, the ground track of the aircraft determines the direction to which the top of the
map points. The map continuously rotates as the user aircraft changes ground path
direction during flight. To display overlay objects such as other air traffic in the correct
position with respect to the underlying CustomDraw map, the gauge units of the overlay
object must also be rotated consistent with the base map.

There are two approaches to accomplish this. The first utilizes a coordinate rotation
transform. For simplicity, I prefer a Euclidean transform applied to the real earth X and
Y distances of the overlay object relative to user aircraft and subsequently converting
the rotated X, Y into “rotated” gauge units for the XML display. The second is a vector
solution in which a rotated, pseudo Lat/Lon is computed given distance and bearing. In
this case, distance is the distance to the overlay object and bearing is the true bearing
from user aircraft to the overlay object minus the rotation angle, the aircraft ground
track direction. Flight Sim’s built in GeoCalc variables are well suited for this solution.
The gauge units of the pseudo Lat/Lon are then used to display the overlay object with
XML. Of the two methods, I prefer Euclidean coordinate rotation; the code is simpler
and the results are slightly more accurate.

Euclidean Coordinate Rotation

A two-dimensional coordinate rotation (2-d Affine transform) applies the following matrix
multiplication:

where (x2, y2) are the coordinates of point (x1, y1) after rotation of angle α around the
origin – normally the users aircraft. Expanding the matrix produces:

x2

y2
=

x cosα -sinα
sinα cosα

x

y1

x1

130

x2 = x1cos(α) - y1sin(α)

y2 = x1sin(α) + y1cos(α)

Note that the rotation must be applied to real earth X and Y distances, not the gauge
units. Following rotation the new point, (x2, y2), is converted into gauge units for XML
overlay display.

The FSX XML:

where the coordinate rotation script for TrackUp = 1 starts at line 18. ArcLen_X,

ArcLen_Y are (x1, y1) and ArcLen_X2, ArcLen_Y2 are (x2, y2). The rotation angle, α, is
(A:GPS GROUND TRUE TRACK, radians).

131

Vector Rotation given Distance and Bearing

The second approach creates rotated coordinates for the overlay object by subtracting
the rotation angle from the true bearing to the overlay object, then computing a
“pseudo” latitude and longitude given distance and the adjusted bearing. Subsequently,
the pseudo latitude and longitude are converted to gauge units for display by XML.
Refer to the diagram below.

Formulas for latitude and longitude given distance and bearing can be found in the
excellent reference, “Aviation Formulary v.1.46” by Ed Williams, but the most convenient
way to compute the pseudo latitude and longitude is to use the built in gps GeoCalc
variables, GeoCalcLength, Azimuth1, ExtrapolationLatitude and ExtrapolationLongitude.

132

The FSX XML:

The vector rotation script starts at line 19. Explanation of the GeoCalc variables can be
found in the FS9GPS Module Guidebook.

The TrackUp=1 rotations described above are valid in FS9 at all zoom levels and in FSX
at zooms less than 500 km where sinusoidal projection is used. Unfortunately, FSX
introduces an unexpected incremental rotation at zooms greater than or equal to 500
km with the equidistant cylindrical projection and consequently, the rotation methods I
use do not work. Until I can determine how to predict this, I have no solution for
TrackUp=1 for zooms >= 500 km.

Zoom

<500 km >=500 km

FS9 TrackUp=0 � �
FS9 TrackUp=1 � �

FSX TrackUp=0 � �
FSX TrackUp=1 � �

133

TCAS Overlay Example (FSX)

The maps below demonstrate a TCAS overlay that can be scripted using XML. Figure A
is a TrackUp = 0 map showing all airborne traffic in the vicinity Regan Washington
National Airport using the ATC small black square � symbol. The small red circles � in
Figure B are the overlay points whose gauge display coordinates were generated with
the XML previously described.

Figures C and D are the equivalent maps but with TrackUp = 1.

134

Advantages of a TCAS overlay include:

• The TCAS search radius can be limited to ~20 - 30 NM which is the
design specification for real TCAS systems. LayerVehicles displays all
aircraft traffic in map view, even traffic in excess of 30 NM that would
never be seen by real TCAS.

135

• Accurate intruder alerts (Proximate Traffic, Traffic Advisory and
Resolution Advisory) can be computed in real time from information
returned by the ITrafficInfo search together with a Closest Point of
Approach algorithm.

• An overlay allows utilization of the CustomDraw map terrain base, if
desired.

• Realistic looking, alert status dependent, custom TCAS traffic symbols can
be displayed, all positioned accurately with respect to the underlying
CustomDraw moving map (in TCAS mode, LayerVehicles would not be
displayed, only the TCAS overlay would be displayed).

• Some dis-advantages include 1) many <Element>, 2) interrogation
geometry that is circular rather than ellipsoidal front-looking.

The TCAS chapter discusses this in more detail.

136

� Transforming Gauge Units (Mouse Click) to Lat/Lon Coordinates:
Determining Distance, Bearing, Latitude and Longitude from a Mouse Click

This straight forward solution involves calculation of N-S and E-W arc lengths (distances)
of the clicked point from the aircraft position using mouse coordinates, XML map scale
functions and Zoom Factor and then computing latitude and longitude from the resulting
spherical angles. Distance and bearing to the mouse click point are calculated using gps
variables after that.

In the example above, the aircraft is holding on Rwy 5 at Adelaide International Airport,
South Australia, and the airport symbol for Cleve Airport, Cleve South Australia (YCEE),
is clicked.

Mouse functions M:X and M:Y return the gauge unit coordinates of the mouse click,
which, in the example, are X: 58.943723 and Y: 151.059730 gauge units.

The coordinate calculations that follow are valid for TrackUp=0, or, top of the map is
True North. When TrackUp=1, a rotation to reverse out the aircraft ground track is
required for the correct latitude, longitude and bearing of the mouse click point. After
click Latitude and Longitude are calculated, distance and bearing are easily determined
using GeoCalc variables.

137

Mouse Y (M:Y): 151.059730 gauge units

Mouse X (M:X): 58.943723 gauge units

PLANE LATITUDE (Lat1): -34.958211 degrees

PLANE LONGITUDE (Lon1): 138.517680 degrees

Plane Y (CenterY): 300 gauge units

Plane X (CenterX): 250 gauge units

XML Map Scale Y: 9.260000 1/(1852 gauge units)

XML Map Scale X: 9.798717 1/(1852 gauge units)

Z Factor: 100 NM

Average Earth Radius: 3440.065 NM

Flight Simulator X? : 1 1 = FSX; 0 = FS9
Mouse Delta Y: -148.940270 gauge units
Mouse Delta X: -191.056277 gauge units

Zoom: 185200 meters
Arc Length_Y (N-S): -74.470135 NM

Delta Latitude Radians: -0.021648 radians
Click Point Latitude: -33.717878 degrees

Cosine Average Latitude: 0.825724 unitless
Sinusoidal Projection Adjust: 1 unitless

Arc Length_X (E-W): -101.085658 NM
Delta Longitude Radians: -0.035587 radians

Click Point Longitude: 136.478711 degrees

A B C
1 Mouse Y (M:Y): 151.059730 gauge units

2 Mouse X (M:X): 58.943723 gauge units

3 PLANE LATITUDE (Lat1): -34.958211 degrees

4 PLANE LONGITUDE (Lon1): 138.517680 degrees

5 Plane Y (CenterY): 300 gauge units

6 Plane X (CenterX): 250 gauge units

7 XML Map Scale Y: 9.260000 1/(1852 gauge units)

8 XML Map Scale X: 9.798717 1/(1852 gauge units)

9 Z Factor: 100 NM

10 Average Earth Radius: 3440.065 NM

11 Flight Simulator X? : 1 1 = FSX; 0 = FS9
12 Mouse Delta Y: =B1-B5 gauge units
13 Mouse Delta X: =B2-B6 gauge units
14 Zoom: =B9*1852 meters
15 Arc Length_Y (N-S): =B12*B7*B9/1852 NM
16 Delta Latitude Radians: =B15/B10 radians
17 Click Point Latitude: =B3-DEGREES(B16) degrees
18 Cosine Average Latitude: =COS(RADIANS((B3+B17)/2)) unitless
19 Sinusoidal Projection Adjust: =IF(B14>=500000,B18,1) unitless
20 Arc Length_X (E-W): =B13*B8*B9*B19/1852 NM
21 Delta Longitude Radians: =B20/(B10*B18) radians
22 Click Point Longitude: =B4+DEGREES(B21) degrees

138

The yellow variables are the mouse click coordinates returned by the M:X and M:Y
functions, the variables in red are knowns, or givens, and the rest are simple
calculations. The green variables are the values initially being sought; latitude and
longitude of the mouse click.

The equivalent XML is shown below. This should be placed within an <Update> section
of the code.

• Lines 3 - 17: The click latitude and longitude calculations.

• Lines 18 - 24: The distance and bearing calculations using GeoCalc variables.

• Lines 28 – 35: Latitude, longitude and bearing calculation for the TrackUp = 1
case.

139

The mouse code:

• Line 1: The upper left corner of the CustomDraw map display is located at
gauge unit X=150, Y=10. The map display is 500 gauge units wide by 400
gauge units high. Consequently, this line establishes the entire map display as a
clickable area

• Line 6: A left mouse click enables display of Latitude and Longitude information
on the screen – a readout of the lat, lon, dist, brg calculations

• Line 7: A toggle that allows the calculation code to be executed

• Line 12: A right click disables display of the lat, lon, dist, brg readout

These calculations fail to yield accurate latitude, longitude and bearing information in
the FSX case where zoom exceeds 500 km.

Zoom

<500 km >=500 km

FS9 TrackUp=0 � �
FS9 TrackUp=1 � �

FSX TrackUp=0 � �
FSX TrackUp=1 � �

140

Accuracy

Assuming the XML Map has been calibrated carefully, accuracy of coordinates calculated
from a mouse click is quite acceptable I believe.

The cross-plots above show the percent error for coordinates and distances measured
using mouse clicks. Latitude and Longitude errors relative to gps variables
GeoCalcLatitude and Longitude rise with increasing Zoom Factor, but are less than about
0.1 percent error through 800 NM range. Distance and Bearing errors calculated using
the Click Latitude and Longitude are also very low, averaging less than 0.5 percent.

To put those errors in perspective, the plot below translates the errors into physical
screen pixels. At Zoom Factors less than 200 NM, accuracy is within one physical pixel,
or, in practical terms, essentially no error. Errors reach up to about 3 physical pixels at
the 800 NM Range level.

Distance Error

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 100 200 300 400 500 600 700 800 900

Zoom Factor = Range (NM)

N
u

m
b

e
r

o
f

P
ix

e
ls

141

Key Equations

Gauge Units = Meters / (Scale x Zoom Factor)

Scale = Meters / (Gauge Units x Zoom Factor)

Offset Lat Lon given N-S and E-W arc lengths:

Lat2 = Lat1 + [ArcLenY / EarthRadius]

Lon2 = Lon1 + [ArcLenX / (EarthRadius x cos(Lat2))]

Lat2 - Lat1 = [ArcLenY / EarthRadius]

Lon2 - Lon1 = [ArcLenX / (EarthRadius x cos(Lat2))]

ArcLenY = (Lat2 - Lat1) x EarthRadius

ArcLenX = (Lon2 - Lon1) x (EarthRadius x cos(Lat2))

Coordinate rotation:

X1 = x0cos(a) – y0sin(a)

Y1 = x0sin(a) + y0cos(a)

142

TCAS
Traffic Alert and Collision Avoidance System in FSX

Acknowledgements

A discussion of Flight Simulator TCAS must begin with acknowledgement of the original
FS9 TCAS developed by Arne Bartels in 2006 and Doug Dawson’s re-packaging of it for
FSX use in 2012. Arne’s FS9 TrafficRadar module can be downloaded free of charge at:

http://library.avsim.net/index.php?CatID=fs2004gau (log-in, then search for “DLL for

XML traffic radar / TCAS”)

Doug’s work is also in the public domain and can be downloaded from the AVSIM Library
above, or from the FSDeveloper Downloads site:

http://fsdeveloper.com/forum/downloads.php?do=file&id=104

or here (Doug’s web site):

http://www.douglassdawson.ca/

Lastly, acknowledgement is mostly owed to Microsoft for making ITrafficInfo variables
available in FSX.

XML TCAS in FSX

The discussion of TCAS that follows ties together previous topics such as scale
calibration, lat/lon transforms, vector rotations and ITrafficInfo variables. It shows the
math behind simple threat identification and demonstrates one approach for
development of a XML-based TCAS overlay that can be superimposed on CustomDraw
Map or used in a stand-alone gauge.

The ITrafficInfo group variables in FSX enable interrogation and tracking of AI and
multiplayer aircraft traffic. This is the platform of an XML-based TCAS system for FSX.

All real-world TCAS systems contain a traffic display and some level of traffic threat alert
capability: Proximate Traffic, Traffic Advisory (TA) and Resolution Advisory (RA). TCAS
systems in use today are divided into two groups, TCAS I and TCAS II. For Flight
Simulator purposes, TCAS I and TCAS II differ in the sophistication of the alerting
capability and collision avoidance maneuver instructions.

143

TCAS SYSTEM COMPONENTS
TCAS

I

TCAS

II Key Flight Simulator Variables

Traffic Display Required Required Yes FSX ITrafficInfo variables and A:PLANE variables

Proximate Traffic Threshold Required Required Yes FSX ITrafficInfo variables and A:PLANE variables

Traffic Advisory Threshold Required Required Yes FSX
ITrafficInfo and A:PLANE variables and Closest

Point of Approach algorithm

Resolution Advisory Threshold N/A Required Yes FSX
ITrafficInfo and A:PLANE variables and Closest

Point of Approach algorithm

Resolution Advisory Maneuvers and Display N/A Required Yes FSX ITrafficInfo variables and A:PLANE variables

Can Be Modeled By

Flight Simulator?

In Flight Simulator X, the TCAS Traffic display overlay, TCAS I and TCAS II Proximate
Traffic and Traffic Advisory Status, and many features of TCAS II Resolution Advisories
can be modeled with XML. Resolution Advisory Maneuvers and a Resolution Advisory
Display are beyond the scope of this guidebook; however, references listed at the end of
this chapter will be useful guidance to those that want to replicate this capability.
Complementary RAs (mutual avoidance maneuvers or TCAS/TCAS coordination) with AI
traffic are not possible in Flight Simulator because AI traffic have no collision avoidance
capability.

An approach to XML TCAS in FSX

One approach for a FSX XML-based TCAS II system is to construct it from three parts:

• Nearest traffic search using ITrafficInfo variables

• Search interrogation loop. Real-time, continuous assessment of Proximate
aircraft, Traffic Advisory and Resolution Advisory status based on US FAA or
ICAO TCAS II protocol, and computation of Gauge_X, Gauge_Y map position for
each intruder aircraft

• Traffic display overlay for the CustomDraw map which enables the use of custom
traffic bitmaps or polygons (i.e., realistic looking symbols that change according
to alert status) instead of the stock FSX CustomDraw traffic symbol.

A general logic flow is shown on the next page. In my application, the ITraffic search
instructions and the interrogation loop are contained within the <Update> section and
the traffic display overlay in <Element>.

144

ITrafficInfo Nearest Traffic Search Parameters
C:ITrafficInfo:Filter 80 (Awake and In Air)
C:ITrafficInfo:Radius 20 Nautical Miles (14 to 30, user preference)
C:ITrafficInfo:MaxVehicles 30
C:ITrafficInfo:Latitude A:PLANE LONGITUDE
C:ITrafficInfo:Longitude A:PLANE LATITUDE

Loop through Intruder Aircraft returned by the ITraffic Search
Intruder Aircraft 1 through C:ITrafficInfo:ListSize

Interrogate:
C:TrafficInfo:C:PLANE LATITUDE
C:TrafficInfo:C:PLANE LONGITUDE
C:TrafficInfo:C:PLANE ALTITUDE
C:TrafficInfo:C:VERTICAL SPEED
C:TrafficInfo:C:GROUND VELOCITY

Calculate:
Time of Closest Point of Approach (Range Tau)
Time of Co-Altitude (Vertical Tau)

Assess:
Proximate, TA or RA Status, Relative Altitude, VSI Arrow

Compute:
Gauge_X and Gauge_Y map position

Store:
Proximate, TA or RA Status, Relative Altitude, VSI Arrow
Gauge_X, Gauge_Y into L:VARs or XMLVARS

Next

TCAS Map Display
Display Element:

Proximate, TA and RA Aircraft Symbol as appropriate
Display using:

<Shift><Value>'Intruder_1_GaugeX</Value><Scale X="1"/></Shift>

<Shift><Value>'Intruder_1_GaugeY</Value><Scale Y="1"/></Shift>

N
e
a
re

st
 T

ra
ff

ic

S
e
a
rc

h
IT

ra
ff

ic
In

fo
 S

e
a
rc

h
 R

e
su

lt
s

In
te

rr
o
g
a
ti
o
n
 L

o
o
p

T
ra

ff
ic

 D
is

p
la

y

O
v
e
rl
a
y

FAA TCAS II Protocol

Example code written for this guidebook incorporates TCAS II protocol described in the
following US F.A.A. reference, “Introduction to TCAS II Version 7.1” (February, 2011):

http://www.faa.gov/documentLibrary/media/Advisory_Circular/

TCAS%20II%20V7.1%20Intro%20booklet.pdf

145

XML design elements include (page number refers to the F.A.A. reference):

• Page 13: Proximate Traffic definition 6 NM and +/- 1200 feet

• Page 13-14: Traffic Display Symbology

• Page 17: Simultaneously track up to 30 transponder equipped aircraft within a
nominal range of 30 nmi.

• Page 22: TCAS Control panel switch StandBy, TA-Only, and TA-RA

• Page 22-23: TCAS Sensitivity Levels (SL) based on TCAS control panel switch
position and altitude

• Page 23: Tau. Time-to-go to Closest Point of Approach and Co-Altitude. Range
Tau and Vertical Tau alarm thresholds as indicated in Table 2

Table 2. Sensitivity Level Definition and Alarm Thresholds

Own Altitude (feet) SL Tau (Seconds) DMOD (nmi) ALIM
(feet)

TA RA TA RA TA RA RA
< 1000 (AGL) 2 20 N/A 0.30 N/A 850 N/A N/A

1000 - 2350 (AGL) 3 25 15 0.33 0.20 850 600 300
2350 - 5000 4 30 20 0.48 0.35 850 600 300

5000 - 10000 5 40 25 0.75 0.55 850 600 350
10000 - 20000 6 45 30 1.00 0.80 850 600 400
20000 - 42000 7 48 35 1.30 1.10 850 700 600

> 42000 7 48 35 1.30 1.10 1200 800 700
Introduction to TCAS II Version 7.1, US Department of Transportation, Federal Aviation Administration, Feb 28, 2011

ZTHR (feet)
Altitude Threshold

• Page 23-25: Distance Modification (DMOD) and Altitude Threshold (ZTHR) alarm
threshold modifications

• Page 28: Target on ground determination. Advisory Inhibit if intruder Radio
Height (simplifying assumption) is less that 360 feet

• Page 29: Inhibit threat declaration against intruder aircraft with vertical rates in
excess of 10,000 fpm

Range Tau and Vertical Tau

TCAS computers primarily incorporate time separation calculations rather than distance
separation to determine traffic alerts. Alert criteria, or thresholds, are divided into
vertical and slant time components. In the vertical dimension, the time to co-altitude is
called Vertical Tau and in the slant (range) dimension, the time to closest point of
approach is called Range Tau. A TA or an RA is issued only when both the range tau
and vertical tau are less than certain threshold values that are a function of altitude
(Sensitivity Levels, see Table 2).

146

Range tau is equal to the slant range divided by the relative closing speed between own
aircraft and the intruder. It can be calculated by comparing changes in slant distance
from one ITraffic interrogation cycle to the next as follows:

Slant_Distance1 (NM) = Slant Distance previous interrogation cycle

Slant_Distance0 (NM) = Slant Distance current interrogation cycle

Time1 = Time of previous interrogation cycle

Time0 = Current time

Delta_Distance (NM) = Slant_Distance1 - Slant_Distance0

Delta_Time (seconds) = Time0 - Time1

Closing_Speed (NM per sec) = Delta_Distance / Delta_Time

Range Tau0 (seconds) = Slant_Distance0 / Closing_Speed

ITrafficInfo:CurrentDistance is a slant range distance that would appear well suited for
this calculation. However, Flight Simulator updates this variable every two seconds only,
so it is not ideal for a TCAS application. Consequently, I prefer to derive slant distance
using GeoCalc and system variables as follows:

Slant_Distance0 = (GeoCalcDistance0
2 + Relative_Altitude0

2)

This calculation involves the following variables, all of which are updated each gauge
update cycle:

(C:ITrafficInfo:C:PLANE ALTITUDE, feet)

(A:PLANE ALTITUDE, feet)

(A:PLANE LATITUDE, degrees)

(A:PLANE LONGITUDE, degrees)

(C:ITrafficInfo:C:PLANE LATITUDE, degrees)

(C:ITrafficInfo:C:PLANE LONGITUDE, degrees)

(C:fs9gps:GeoCalcDistance, nmiles)

Vertical tau can be solved by an intersection of two lines method:

147

DMOD and ZTHR

TA and RA thresholds are further modified for low closure rate situations where an
intruder can come very close while range and vertical tau remain above standard
thresholds. These modifications are discussed in the FAA TCAS II v7.1 reference.

Display Variables and Arrays

At the conclusion of every ITrafficInfo interrogation cycle, five values must be calculated
and stored for each intruder aircraft to provide information for a TCAS overlay.

1. TCAS display symbol code (L:TCAS_Symbol, enum), a function of alert status
(Other, Proximate, TA, or RA). An example:

148

The display symbol code determines which TCAS symbol is used for the display.
Note that most real TCAS systems display intruder aircraft on a black background,
not superimposed on a color terrain base. If this is the users’ preference, then in
TCAS mode, set LayerTerrain = 0 and BackgroundColor = 0x010101, or create a
stand-alone TCAS gauge that is not an overlay for the CustomDraw map.

2. Relative Altitude measured in hundreds of feet

3. Relative altitude label position shift. When the intruder is above user’s aircraft,
relative altitude is displayed above the TCAS symbol; when the intruder is below
the user’s aircraft, relative altitude is displayed below the TCAS symbol

4. Gauge_X position of each intruder aircraft

5. Gauge_Y position of each intruder aircraft

This establishes the need for variable arrays, for example

(L:TCAS_Symbol_0, enum) thru (L:TCAS_Symbol_n, enum)

(L:RelativeAltitudeHundreds_0, enum) thru (L:RelativeAltitudeHundreds_n, enum)

(L:RelAltPositionShift_0, enum) thru (L:RelAltPositionShift_n, enum)

(L:IntruderGaugeX_0, enum) thru (L:IntruderGaugeX_n, enum)

(L:IntruderGaugeY_0, enum) thru (L:IntruderGaugeY_n, enum)

where “_0” is the index number of the first (nearest) intruder aircraft and “_n ” is the
index of the last intruder aircraft returned in the ITrafficInfo search.

XMLVars for Dynamic Variable Arrays

Traditional L:Vars can be used to create the arrays but the code is lengthy. The easiest
solution utilizes Tom Aguilo’s XMLVars module to create a dynamic variable array each
time the ITrafficInfo search results are interrogated. In the example TCAS gauge
provided in the BlackBox website, I use XMLVars to store the interrogation results.

The XMLVars module can be downloaded free of charge from:

http://fsdeveloper.com/forum/downloads.php?do=file&id=105

Follow the installation and operation instructions contained in the ReadMe file.

149

TCAS Overlay Display Example

Figure A shows airborne aircraft vehicles displayed by LayerVehicles.

Figure B is the same display but with DetailLayerVehicles = 2, CustomDraw’s TCAS
symbol. Some drawbacks of using FSX CustomDraw’s LayerVehicles TCAS symbols:

• Symbol does not change as alarm status changes. FSX does not provide TCAS II
alarm capability

• Relative altitude and climb/descent arrows are not available

• All AI aircraft in map view are displayed, even those outside real TCAS
interrogation limits

Figure C shows a TCAS XML overlay on the CustomDraw Map base. ITrafficInfo search
parameters consistent with real TCAS units are used.

Finally, Figure D shows the TCAS overlay on the CustomDraw map base, but with
LayerVehicles = 0.

150

151

152

Figure E demonstrates the traffic symbol change as the intruder becomes Proximate
Traffic (within 6 NM distance and +/- 1200 feet altitude).

Figure F shows the intruder aircraft when alarm status is Traffic Advisory.

Figure G is alarm status Resolution Advisory.

Figure H is a spot plane view taken at the same time.

Example TCAS XML gauge available from BlackBox website

A fully functional XML gauge is available for download from the BlackBox website. It
demonstrates several concepts discussed in the guidebook including scale calibration,
“click distance” application, TAWS and TCAS overlay.

153

References

1. “Introduction to TCAS II Version 7.1”, US Department of Transportation, Federal
Aviation Administration, February 2011

http://www.faa.gov/documentLibrary/media/Advisory_Circular/TCAS%20II%20V7.1%
20Intro%20booklet.pdf

2. “ACAS II Guide Airborne Collision Avoidance System II (incorporating version 7.1)”,
The European Organisation for the Safety of Air Navigation (EUROCONTROL), January
2012

http://www.eurocontrol.int/msa/gallery/content/public/documents/ACAS_guide71.pdf

3. “Overview of ACAS II (incorporating version 7.1)”, The European Organisation for the
Safety of Air Navigation (EUROCONTROL), January 2012

http://www.eurocontrol.int/msa/gallery/content/public/documents/Training_ACAS_ove
rview.pdf

4. Kochenderfer, M.J., Chrysanthacopoulos, J.P., Kaelbing, L.P. and Lozano-Perez, T.,
“Model-Based Optimization of Airborne Collision Avoidance Logic”, Lincoln Laboratory,
Massachusetts Institute of technology, January 2010

http://www.ll.mit.edu/mission/aviation/publications/publication-files/atc-
reports/Kochenderfer_2010_ATC-360_WW-18658.pdf

5. Bartels, Arne, “XML Traffic Radar 2.0.1”, July 2006

http://library.avsim.net/index.php?CatID=fs2004gau

154

LayerRacePoints
FSX Only

As of the release date of this Guidebook (February, 2013), I have not taken the time to
study this layer.

A future update to the guidebook may contain a discussion of this layer.

155

 CustomDraw: Rose

CustomDraw Rose is a separate class that renders a compass rose overlay for the
CustomDraw Map. Its XML must be placed below the map code in order to display on
top of the map.

The start tag is similar to fs9gps:map, as follows:

<Element Name=”Compass Rose”>
<Position X="150" Y="10"/>
<CustomDraw Name="fs9gps:rose" X="500" Y="400" Brig ht="Yes">

Position, X and Y are normally the same as used for fs9gps:map.

� Heading (radians)

Heading is the direction to which the top of the rose points. I prefer

<Heading>
(L:TrackUp, bool) 0 ==

if{ 0 }
els{ (A:GPS GROUND MAGNETIC TRACK, radians) }

</Heading>

� CenterX
� CenterY (gauge units)

Center of the compass, normally the user’s aircraft position.

� Radius (gauge units)

Radius of the compass measured in gauge units along the short axis.

� Color (BGR hexadecimal)

Line color of the rose, tick marks, and degrees labels.

� BackgroundColor (BGR hexadecimal)

Background color of the degrees markings.

156

� LineWidth (screen pixels)

Line width of the rose, in screen pixels.

� Font (string)

Font used for the degrees markings, for example, Arial.

� FontSize (enum)

Font size of the degrees markings.

� BigFontSize (enum)

Size of the “N”, “S”, “E”, “W” labels in the LabelAllTicks=0 case.

� FullCircle (bool) FSX Only

FullCircle=1 for a complete circle rose. FullCircle=0 for a half rose.

� LabelAllTicks (bool) FSX Only

LabelAllTicks = 1: Ticks are drawn and annotated every 10 degrees.

LabelAllTicks = 0: Ticks are drawn every 10 degrees but annotated every 30 degrees.

Additionally, the cardinal directions, “N”, “S”, “E”, and “W”, are displayed using
BigFontSize.

� Force3Digits (bool) FSX Only

Three digits are used to annotate degrees. For example, 60 degrees is displayed as 060.
See diagram below.

157

158

Example XML Map Gauges

Included in the BlackBox/CustomDraw Map website are two XML gauge examples
available for download. They demonstrate several of the topics discussed in this
guidebook, including:

• ITrafficInfo variables

• FSX map projection schemes

• Calibration of CustomDraw Map and XML overlay map scales

• Creation of XML map overlays and coordinate rotation transforms

Some interesting map applications can be written using XML overlays to the
CustomDraw map base. The example gauges include:

• TCAS Map with functional Proximate, Traffic Advisory, and Resolution Advisory
alarm status and appropriate TCAS symbols

• TAWS map display. As close as you can get with what FSX offers

• Click Distance, Bearing, Lat and Lon. Click anywhere on the map to return
Distance and Bearing from users aircraft, and Latitude and Longitude of the click
point. This opens the door to interesting applications such as “touch screen”
MFD displays (well, the mouse is your finger)

• Nearest search centered on mouse click point rather than users aircraft. Click
anywhere on the map to see details of the 10 nearest airports to the mouse click.
A variation on this is to click on or simply near any airport shown on the map to
see any or all details about that airport that are available from the gps database
– you don’t need to enter an Ident or ICAO to identify the airport or other facility
you are interested in, just point to it by clicking on the map

• Click to add Waypoint to Flight Plan. Click anywhere on the map and add a new
waypoint at that location

• Stationary Map rather than normal Moving Map. Click the M_M icon and the
map stops moving but the airplane symbol starts moving – like the flight map
that passengers can view on an airliner. Toggle M_M “On” and “Off” to see map
reset feature

These are fully functional gauges written using FS9 XML syntax, but should be used in
FSX as they demonstrate some features available only in FSX.

� Gauge Setup

The gauges are large, 520 x 700 gauge units, and are intended to be set up as a
separate window in your panel.cfg file, for example:

159

[Window19] or whatever window number is appropriate in your panel
position=5
size_mm=520,700
visible=1

gauge00=FSMAP!ExampleMovingMap1, 0, 0, 520, 700

Use whatever path information is consistent with your panel. My installation has a
folder named “FSMAP” in which I keep the XML gauge file. The FSMAP folder is located
within the Panel folder of my aircraft.

XMLVars

The TCAS application uses variable arrays to store necessary information about intruder
aircraft. An easy way to create such arrays is through the use of the XMLVars class in
Tom Aguilo’s XMLTools module that can be freely downloaded from:

http://fsdeveloper.com/forum/resources/xmltools-2-0-xml-expansion-module-for-
fsx.148/

Follow the installation and operation instructions contained in the ReadMe file.

My example gauges will not function without XMLTools first being installed.

� Download Gauge Examples

The ExampleMovingMap1.xml gauge contains all of the applications listed above
except Stationary Map.

The ExampleStationaryMap1.xml gauge adds the stationary map feature. Because
so many reference points are changed when switching to a stationary map, I decided to
save this as a separate file. It is easier to understand my approach to making an
overlay by inspecting the script in the ExampleMovingMap1.xml gauge.

� Description of Features

• Figure 1 identifies the click spots of the gauges

• Figure 2 shows the sequence to retrieve Click Distance information and to
compare that with the gps module GeoCalc distances. The GeoCalc reference is
setup up to function only with airport facilities, not with VORs or NDBs, for
example. Enter the three to four character airport Ident, not the full ICAO
identifier

160

• Figures 3 through 6 demonstrate the map calibration sequence. Note that
map calibration must always be done at zooms under 500 km (i.e., zoom factors
= ranges = of 269 NM or less). As well, TrackUp must be set to 0, and the
simulation should not be in Pause mode. Calibration needs to be done each time
the size of the map changes

I recommend that the calibration sequence be repeated to double check
consistency of M:X and M:Y returns. If the scales are different the second time,
it is because the initial mouse clicks returned slightly different X and Ys than the
second attempt. I have not figured out why, … yet.

• Figures 7 and 8 show the process to add a new waypoint to a loaded flight

plan by using a mouse click

• Figures 9 through 11 describe the Nearest search from a click point. In this
example, I use the click latitude and longitude to perform a nearest airport
search relative to the click point.

Note the code within the “NEAREST AIRPORT SEARCH TABLE”. I use
GeoCalcDistance and GeoCalcBearing to return the distance and bearing relative
to the user aircraft rather than displaying the normal distance and bearing to the
nearest search origin point which in this case is not the user aircraft.

Additionally, I utilize XMLVars to store the gauge unit X and Y and Ident of the
10 nearest airports. The following code,

%(

(@c:NearestAirportSelectedLatitude, radians) (>L:Ov erlayObject_LAT, radians)

(@c:NearestAirportSelectedLongitude, radians) (>L:O verlayObject_LON, radians)

@GaugeXY

'ClikNrstY_' l31 scat @FindIndex (L:Gauge_Y, number) @WriteNumber

'ClikNrstX_' l31 scat @FindIndex (L:Gauge_X, number) @WriteNumber

'ClikNrstIdent_' l31 scat @FindIndex (@c:NearestAir portCurrentIdent) @WriteString

)

does not display information as the rest of the <String> does, it is used within
the <String> loop to assign values to ClikNrstY, X, and Ident arrays.

The array capability of XMLVars is very useful indeed.

• Figure 12 shows the TAWS map operation. When TAWS mode is active, the

TAWS click button displays the radar altimeter which is useful reference to Q/C
the TAWS display

161

• Figures 13 and 14 show the TCAS operation.

When TCAS mode is active, the number of intruder aircraft within the search
radius (30 NM search radius and 30 aircraft maximum, in my example) is
displayed in the TCAS click button. The ITrafficInfo search will return the user’s
aircraft as Index 0 with a VID=1. You might want to add 1 to the MaxVehicles to
account for this.

The Vehicle ID is not a real-world TCAS display element but is included here for
Q/C purposes. It can be toggled “On-Off” by clicking the VID button.

Additional features – the icons in the lower right toggle “On-Off” the following:

• North arrow

• User aircraft symbol

• Compass rose

• Moving Map – Stationary Map toggle

• Cross hairs

Zoom: Map zoom is achieved through use of the Zoom “+” and “ – ” toggle. The
ZFactor, or Range, is displayed above the toggles. The height of the map is 2 times the
ZFactor.

Toggle
Layers

Toggle
Layers

TAWS
Map

TAWS
Map

TrackUp
0 or 1

TrackUp
0 or 1

TCAS
Map

TCAS
Map

Add
Waypoint

Add
Waypoint

Click
Nearest

Click
Nearest

GeoCalc
Dist

GeoCalc
Dist

Click
Nearest

Click
Nearest

GeoCalc
Dist

GeoCalc
Dist

TCAS
Map

TCAS
Map

Click
Nearest

Click
Nearest

GeoCalc
Dist

GeoCalc
Dist

Toggle
Layers

Toggle
Layers

TCAS
Map

TCAS
Map

Click
Nearest

Click
Nearest

GeoCalc
Dist

GeoCalc
Dist

Scale
Calibration

Scale
Calibration

ZoomZoom

Crosshairs

Moving Map /
Stationary Map

Compass Rose

Airplane Symbol

North Arrow

Other
Toggles

Other
Toggles

FUNCTIONS CLICK DISTANCE &
GeoCalc Reference

2. Click
GeoCalc

2. Click
GeoCalc

GeoCalc
results

GeoCalc
results

Compare

3. Click Airport
KHEF to display
Distance, Bearing,
Lat & Lon

3. Click Airport
KHEF to display
Distance, Bearing,
Lat & Lon

• Left click anywhere on the
map to display distance, bearing
and lat / lon of click point

• Right click to make the yellow
box disappear

• Left click anywhere on the
map to display distance, bearing
and lat / lon of click point

• Right click to make the yellow
box disappear

1. Click & Enter
Airport IDENT

(Right click to clear entry)

1. Click & Enter
Airport IDENT

(Right click to clear entry)

The GeoCalc reference is
set up for Airports only

1 2

Distance, Bearing, Lat & Lon

162

163

164

165

LayerAirports
Additional Information

Additional detail for LayerAirports relating to airport symbol and text generated by Flight
Simulator:

Airport Symbol Size – A Function of Runway Length and Zoom

The size (diameter) of the symbol is proportional to length of the longest runway and
the zoom setting. The relationship for index 2 and 3 symbols for Range = 10 and 15
NMiles is shown in the graphs above. The minimum size rendered is always 10 screen
pixels, and the maximum size, regardless of runway length or zoom, is 60 screen pixels.
Airport symbols become smaller as the map is zoomed out. Note that a 10000 ft.
runway has a 48 pixel symbol at Range = 10 NMiles, but a 31 pixel symbol at Range =
15 NMiles. Index 4 and 5 have different size relationships but are similarly rendered
proportionate to runway length and zoom. Index 1 (dot, which is always 1 screen pixel),
Heliports, and Seaplane Base Index 2, 3, and 4 are not drawn according to runway
length.

166

TextDetailLayerAirports – A Function of Zoom

DEFAULT TEXT DISPLAY ZOOM RANGES

FSX: 1600 x 1200 FSX: 1600 x 900
Zoom range (m) ZoomFactor range (NM) Zoom range (m) ZoomFactor range (NM)

Runway Numbers 80 to 4,447 0.043 to 2.401 80 to 3,316 0.043 to 1.790

Frequencies 80 to 10,970 0.043 to 5.923 80 to 8,177 0.043 to 4.415

Elevation & Length 80 to 14,825 0.043 to 8.005 80 to 11,050 0.043 to 5.967

Name 80 to 22,237 0.043 to 12.007 80 to 16,575 0.043 to 8.950

Ident 80 to 148,250 0.043 to 80.049 80 to 110,500 0.043 to 59.665

Nothing 148,251 to 5,000,000 80.049 to 2699.784 110,501 to 5,000,000 59.666 to 2699.784

FSX: Permissible Zoom range for fs9gps:Map is 80 to 5,000,000 meters

FS9: 1600 x 1200
Zoom range (m) ZoomFactor range (NM)

Runway Numbers 100 to 8,745 0.054 to 4.722

Frequencies 100 to 21,862 0.054 to 11.805

Elevation & Length 100 to 43,725 0.054 to 23.610

Name 100 to 145,750 0.054 to 78.699

Ident 100 to 291,500 0.054 to 157.397

Nothing 291,501 to 5,000,000 157.398 to 2699.784

FS9: Permissible Zoom range for fs9gps:Map is 100 to 5,000,000 meters

167

Airport Symbol Type Overrides Text Index Selection

FSX: Despite user selection of a TextDetailLayerAirports Index, the text actually
displayed will be limited by the choice of airport symbol – the lower the
DetailLayerAirports Index, the less label information that is displayed as summarized in
the tables below. It is a little complicated, but it’s all part of the default de-cluttering
scheme.

Text that is displayed Text that is displayed

Airport Symbol Id
e

n
t

N
a

m
e

E
le

v
a

ti
o

n
 &

R
w

y
 L

e
n

g
th

C
o

n
tr

o
l

a
n

d

A
d

v
is

o
ry

 F
re

q

R
u

n
w

a
y

N
u

m
b

e
rs

Airport Symbol Id
e

n
t

N
a

m
e

E
le

v
a

ti
o

n
 &

R
w

y
 L

e
n

g
th

C
o

n
tr

o
l

a
n

d

A
d

v
is

o
ry

 F
re

q

R
u

n
w

a
y

N
u

m
b

e
rs

Dot - 1 � Dot - 1 � �

Circle - 2 � Circle - 2 � �

Circle runways - 3 � Circle runways - 3 � �

Block runways - 4 � Block runways - 4 � � � �

Runways - 5 � Runways - 5 � � � �

TextDetailLayerAirports Index = 1 TextDetailLayerAirports Index = 4

Dot - 1 � Dot - 1 � �

Circle - 2 � Circle - 2 � �

Circle runways - 3 � Circle runways - 3 � �

Block runways - 4 � � Block runways - 4 � � � �

Runways - 5 � � Runways - 5 � � � � �

TextDetailLayerAirports Index = 2 TextDetailLayerAirports Index = 5

Dot - 1 � �

Circle - 2 � �

Circle runways - 3 � �

Block runways - 4 � � �

Runways - 5 � � �

TextDetailLayerAirports Index = 3

Example 1: Even if TextDetailLayer index is 5,
only Ident and Elevation & Rwy Length will be
displayed if the airport symbol index is 1, 2, or 3.

Example 2: Runway Numbers are displayed only
when airport symbol and text index are both 5.

168

Font Type, Font Size and Label Offset

FSX: fs9gps:Map uses an Arial font, rasterized without anti-aliasing.

At zoom levels of 7412 meters and below (a very zoomed-in view), font height is 8
screen pixels, and placement of the text (offset of the upper left corner of the Ident or
Name) is 16 screen pixels right and 9 screen pixels up from the airport location. Any
additional lines of text are listed below this.

At zoom levels of 7413 meters and greater (zoomed-out view), font height is 7 screen
pixels, and placement of the text is 13 screen pixels right and 8 screen pixels up from
the airport location. Any additional lines of text are listed below this.

These are the only two size and offset variations. They are automatic and cannot be
changed.

FS9: fs9gps:Map uses Courier New font, rasterized without anti-aliasing. It demotes to
Arial font as Zoom increases. The font height and offsets are shown in the chart below.
They are automatic and cannot be changed.

169

De-cluttering

Map symbols need to be reduced in size or removed from display as Zoom increases (as you
zoom out). This is known as de-cluttering. The stock gps_500 gauge decluttering settings
are shown below. Additionally, CustomDraw has default de-cluttering settings as described
throughout the guidebook.

Stock gps_500 De-cluttering scheme

Case Step: 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Nautical Miles Zoom, Range (NM)

Range, ZoomFactor (NM): 2
0

0
0

1
5

0
0

1
0

0
0

5
0

0

3
5

0

2
0

0

1
5

0

1
0

0

5
0

3
5

2
0

1
5

1
0

5
.0

3
.5

2
.0

1
.5

1
.0

0
.5

7
6

0
.3

2
9

0
.2

4
7

0
.1

6
5

0
.0

8
2

0
.0

0
0

ObjectDetailLayerAirports Hex 0 5 5 5 5 15 15 15 15 15 15 15 1F 1F 5F 5F 5F 5F 5F 5F 5F 5F 5F 5F

ObjectDetailLayerAirports Decimal 0 5 5 5 5 21 21 21 21 21 21 21 31 31 95 95 95 95 95 95 95 95 95 95

TextDetailLayerAirports Integer 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TextDetailLayerVORs Integer 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TextDetailLayerILSs Integer 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TextDetailLayerNDBs Integer 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TextDetailLayerIntersections Integer 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

P
ri

v
a

te

H
e

li
p

o
rt

W
a

te
r

S
o

ft

H
a

rd

N
o

n
-T

w
r

T
o

w
e

r

ObjectDetailLayerAirports Hex 0 0 0 0 0 0 0 0

ObjectDetailLayerAirports Hex 5 0 0 0 0 1 0 1

ObjectDetailLayerAirports Hex 15 0 0 0 1 1 1 1

ObjectDetailLayerAirports Hex 1F 0 0 1 1 1 1 1

ObjectDetailLayerAirports Hex 5F 1 0 1 1 1 1 1

170

fs9gps:Map Guidebook Updates

v.2.0

 Page Edit

 19 Added bullet point on Map Object Color syntax

 26 Added section on Number Formats

 36 Added example of Terrain Shadow = 1 effect on color schemes

 53 Revised VOR graphic

 83 Corrected LayerApproachLeg description error

 86 Added note that TrackUp is True North

 94 Corrected definition of ITrafficInfo:Filter Ground_Vehicles

v.2.0.1

 Page Edit

 19 Corrected text color RGB syntax statement

